Addendum A- EB3

ARCHITECTURE URBAN DESIGN + PLANNING INTERIOR DESIGN

Project Name Project # Project Address	OMD EB3 2001016 78798 Ordnance Rd Hermiston, OR 97838
Company Address	SERA Architects, Inc. 338 NW 5 th Ave Portland, OR 97209
Addendum #	Α
Date of Issuance	13 August 2021

To: All Contract Document Holders

This Addendum forms a part of the Contract Documents and modifies the original Project Manual and Drawings, dated 07 30 2021 as noted below. Acknowledge receipt of this Addendum in the space provided on the Bid Form. Failure to do so may subject bidder to disqualification.

ATTACHMENTS

- 1. Specification Section 00 01 10
- 2. Specification Section 03 54 00
- 3. Specification Section 10 26 01
- 4. Specification Section 10 44 00
- 5. Specification Section 22 11 23.21
- 6. Specification Section 23 09 23
- 7. Drawing Sheet G002
- 8. Drawing Sheet A052
- 9. Drawing Sheet A501
- 10. Drawing Sheet A502
- 11. Drawing Sheet A704
- 12. Drawing Sheet A801
- 13. Drawing Sheet C1.00
- 14. Drawing Sheet C1.01
- 15. Drawing Sheet C1.02
- 16. Drawing Sheet C1.03
- 17. Drawing Sheet C1.04
- 18. Drawing Sheet C1.10
- 19. Drawing Sheet C2.00
- 20. Drawing Sheet C2.01
- 21. Drawing Sheet C2.02
- 22. Drawing Sheet C3.00
- 23. Drawing Sheet C3.00
- 24. Drawing Sheet S101S
- 25. Drawing Sheet S101
- 26. Drawing Sheet S102
- 27. Drawing Sheet S103

- 28. Drawing Sheet S503
- 29. Drawing Sheet S701
- 30. Drawing Sheet M201
- 31. Drawing Sheet M202
- 32. Drawing Sheet M402
- 33. Drawing Sheet E101
- 34. Drawing Sheet E301 35. Drawing Sheet E302

PROJECT MANUAL

DIVISION 00 – PROCUREMENT AND CONTRACTING REQUIREMENTS

Section 00 01 10 TABLE OF CONTENTS

- 1. DELETE Section 23 81 26 Split System Heat Pumps
- 2. ADD Section 23 09 23 Direct Digital Control System for HVAC

DIVISION 03 – CONCRETE

Section 03 54 00 CAST UNDERLAYMENT

1. CHANGE Section 2.03.A.4 pour thickness

DIVISION 10 – SPECIALTIES

<u>10 26 01 WALL AND CORNER GUARDS</u> 1. CLARIFY Section 3.02.B; corner guard install dimensions

10 44 00 FIRE EXTINGUISHERS AND CABINETS

- 1. DELETE Section 1.01.A
- 2. DELETE Section 2.03 FIRE EXTINGUISHERS

DIVISION 22 - PLUMBING

Section 22 11 23.21 INLINE, DOMTESIC-WATER PUMPS

1. CLARIFY Paragraph 2.3.C.2 Impeller

DIVISION 23 - HEATING VENTILATING AND AIR CONDITIONING

Section 23 09 23 DIRECT DIGITAL CONTROL SYSTEM FOR HVAC 1. ADD Section 23 09 23 Direct Digital Control System for HVAC

Section 23 81 26 SPLIT SYSTEM HEAT PUMPS 1. DELETE Section 23 81 26 Split System Heat Pumps

DRAWINGS

<u>G002</u>

1.ADD sheets to Drawing Index 2.CLARIFY Delegated Design Table

<u>A052</u>

1. CLARIFY site lighting locates and other dimensions 338 NW 5TH AVENUE PORTLAND OR 97209 T 503.445.7372 F 503.445.7395 SERADESIGN.COM

<u>A501</u>

1. CHANGE Vertical Circulation drawings to show CMU construction

<u>A502</u>

1. ADD Vertical Circulation Details Sheet

<u>A704</u>

2. ADD roof rake detail

<u>A801</u>

- 1. DELETE insulation from hollow metal door frame in Detail #4 and #8
- CLARIFY construction of Recessed Accessory in Detail #1

<u>C1.00</u>

- 1. CLARIFY uncurbed edge construction, street names, striping locations, and Legend
- 2. CHANGE tree location, maintenance yard extents and driveway pan
- 3. ADD class 50 riprap

<u>C1.01</u>

1. CLARIFY street names and Legend

<u>C1.02</u>

1. CLARIFY street names

<u>C1.03</u>

1. CLARIFY street names

<u>C1.04</u>

1. CLARIFY street names

<u>C1.10</u>

1. CLARIFY street names

<u>C2.00</u>

- 1. CHANGE grades at maintenance pad
- 2. CLARIFY street names

<u>C2.01</u>

1. CLARIFY street names

<u>C2.02</u>

1. CHANGE grades at maintenance pad

<u>C3.00</u>

- 1. ADD site lighting
- 2. CLARIFY callouts, street names, and Legend
- 3. CHANGE cleanout location

<u>C3.01</u>

1. CLARIFY street names

<u>S101S</u>

1. CLARIFY Dimensional adjustments to slab plan

<u>S102</u>

- 1. CHANGE plans to indicate holdowns at girder trusses above
- 2. CLARIFY detail references for additional connection information

<u>S103</u>

- 1. CHANGE plans to indicate holdowns at girder trusses and additional minor revisions
- 2. CHANGE plans to indicate straps at east and west walls

<u>S502</u>

- 1. CHANGE Details 12 and 13; minor revisions
- 2. ADD Detail 15, new connection detail

<u>S503</u>

- 1. CHANGE Details 3, 4, 5, and 8; minor revisions
- 2. CHANGE Detail 10, add brick ledger
- 3. ADD Details 11 and 12 to clarify construction

<u>S701</u>

- 1. CHANGE Detail 10, revise holdown detail
- 2. CHANGE Detail 11, revise girder truss holdowns
- 3. CHANGE Detail 12, revise truss connection

<u>M201</u>

1. ADD emergency shutdown switch on first floor

M202

1. CHANGE location of emergency shutdown switch on second floor

<u>M402</u>

1. CHANGE sequence of operations

<u>E101</u>

- 1. CHANGE transformer location
- 2. CLARIFY site plan information, for consistency with Architectural and Civil

E301

- 1. ADD data drops in Lounge (Room 110)
- 2. ADD data rack to Room 110
- 3. ADD 4"C fiber between Rooms 110 and 210
- 4. ADD HDMI/coax connection for LCD monitors

<u>E302</u>

- 1. ADD data drops in Sr Leaders Quarters (Rooms 201 & 203)
- 2. ADD data drops in Open Bays (Room #205, #206, #212, and #213)
- 3. ADD data rack to Room 210
- 4. ADD 4"C fiber between Rooms 110 and 210
- 5. ADD HDMI/coax connection for LCD monitors

END OF ADDENDUM 'A'

DIVISION 00 - PROCUREMENT AND CONTRACTING REQUIREMENTS

00 01 07 00 01 10 00 31 00	SEALS PAGE TABLE OF CONTENTS AVAILABLE PROJECT INFORMATION GEOTECHNICAL REPORT	
DIVISION 01 ·	GENERAL REQUIREMENTS	
01 10 00	SUMMARY	
01 20 00	PRICE AND PAYMENT PROCEDURES ARCHITECTURAL BULLETIN (AB) FORM	FORM
01 23 00	ALTERNATES	
01 26 13	REQUEST FOR INTERPRETATION	
- /	RFI SAMPLE FORM	FORM
01 30 00	ADMINISTRATIVE REQUIREMENTS	FORM
01 32 16	CONSTRUCTION PROGRESS SCHEDULE	
01 35 15	LEED REQUIREMENTS SUMMARY	
	LEED SCORECARD	
01 35 73	DELEGATED DESIGN PROCEDURES	
01 40 00	QUALITY REQUIREMENTS	
01 43 39	COORDINATED MOCK-UPS	
01 50 00	TEMPORARY FACILITIES AND CONTROLS	
01 57 19	TEMPORARY ENVIRONMENTAL CONTROLS	
01 60 00	PRODUCT REQUIREMENTS	
	SUBSTITUTION REQUEST FORM (DURING BIDDING)	FORM
	SUBSTITUTION REQUEST FORM (AFTER BIDDING)	FORM
01 70 00	EXECUTION AND CLOSEOUT REQUIREMENTS	
01 74 19	CLOSEOUT SUBMITTALS	
01 81 00	FACILITY PERFORMANCE REQUIREMENTS	
01 91 00	GENERAL COMMISSIONING REQUIREMENTS	

DIVISION 02 - EXISTING CONDITIONS

NOT USED

DIVISION 03 - CONCRETE

- 03 30 00 CAST-IN-PLACE CONCRETE
- 03 35 11 CONCRETE FLOOR FINISHES
- 03 45 00 PRECAST ARCHITECTURAL CONCRETE
- 03 54 00 CAST UNDERLAYMENT

DIVISION 04 - MASONRY

04 20 00	UNIT MASONRY

04 20 01 MASONRY VENEER

DIVISION 05 - METALS

- 05 05 13 SHOP APPLIED METAL COATING
- 05 50 00 METAL FABRICATIONS
- 05 51 00 METAL STAIRS

DIVISION 06 - WOOD, PLASTICS, AND COMPOSITES

- 06 10 00 ROUGH CARPENTRY
- 06 17 33 WOOD I-JOISTS
- 06 17 36 METAL-WEB WOOD JOISTS
- 06 17 53 SHOP-FABRICATED WOOD TRUSSES
- 06 18 00 GLUE-LAMINATED CONSTRUCTION
- 06 20 00 FINISH CARPENTRY
- 06 41 00 ARCHITECTURAL WOOD CASEWORK
- 06 82 05 FIBERGLASS REINFORCED PLASTIC PANELING

DIVISION 07 - THERMAL AND MOISTURE PROTECTION

- 07 14 00 FLUID-APPLIED WATERPROOFING
- 07 19 00 WATER REPELLENTS
- 07 21 00 THERMAL INSULATION
- 07 25 00 WEATHER BARRIERS
- 07 41 13 METAL ROOF PANELS
- 07 62 00 SHEET METAL FLASHING AND TRIM
- 07 72 00 ROOF ACCESSORIES
- 07 84 00 FIRESTOPPING
- 07 92 00 JOINT SEALANTS

DIVISION 08 – OPENINGS

- 08 11 13 HOLLOW METAL DOORS AND FRAMES
- 08 31 00 ACCESS DOORS AND PANELS
- 08 53 13 VINYL WINDOWS
- 08 71 00 DOOR HARDWARE
- HARDWARE GROUPS
- 08 80 00 GLAZING

DIVISION 09 - FINISHES

- 09 05 61 COMMON WORK RESULTS FOR FLOORING PREPARATION
- 09 21 16 GYPSUM BOARD ASSEMBLIES
- 09 51 00 ACOUSTICAL CEILINGS
- 09 65 00 RESILIENT FLOORING
- 09 68 13 TILE CARPETING
- 09 90 00 PAINTING AND COATING

DIVISION 10 - SPECIALTIES

- 10 14 00 SIGNAGE
- 10 21 13.19 PLASTIC TOILET COMPARTMENTS
- 10 26 01 WALL AND CORNER GUARDS
- 10 28 00 TOILET, BATH, AND LAUNDRY ACCESSORIES
- 10 44 00 FIRE EXTINGUISHERS AND CABINETS

PROJECT NO. 2001041 13 AUG 2021

DIVISION 11 - EQUIPMENT

11 52 70 **TELEVISION MOUNTS**

DIVISION 12 - FURNISHINGS

12 21 13 HORIZONTAL LOUVER BLINDS 12 93 23 LITER AND RECYCLING RECEPTORS

DIVISION 13 - SPECIAL CONSTRUCTION THROUGH DIVISION 21 – FIRE SUPPRESSION

NOT USED

DIVISION 22 - PLUMBING

22 00 00	COMMON WORK RESULTS FOR PLUMBING	CTE
22 05 29	HANGERS AND SUPPORTS FOR PLUMBING PIPING AND	CTE
	EQUIPMENT	
22 05 93	TESTING, ADJUSTING, AND BALANCING FOR PLUMBING	CTE
22 07 19	PLUMBING PIPING INSULATION	CTE
22 08 00	COMMISSIONING OF PLUMBING	CTE
22 11 16	DOMESTIC WATER PIPING	CTE
22 11 19	DOMESTIC WATER PIPING SPECIALTIES	CTE
22 11 23.21	INLINE, DOMESTIC-WATER PUMPS	CTE
22 13 16	SANITARY WASTE AND VENT PIPING	CTE
22 13 19	SANITARY WASTE PIPING SPECIALTIES	CTE
22 33 30	SOLAR HOT WATER EQUIPMENT	CTE
22 34 00	FUEL-FIRED, DOMESTIC-WATER HEATERS	CTE
22 40 00	PLUMBING FIXTURES	CTE
DIVISION 23	- HEATING, VENTILATING, AND AIR-CONDITIONING (HVAC)	
23 00 00	COMMON RESULTS FOR HVAC	CTE
23 05 23 11	GLOBE VALVES FOR HVAC PIPING	CTE
23 05 23.12	BALL VALVES FOR HVAC PIPING	CTE
23 05 93	TESTING, ADJUSTING, AND BALANCING FOR HVAC	CTE
23 07 00	HVAC INSULATION	CTE
23 08 00	COMMISSIONING OF HVAC	CTE
23 09 23	DIRECT DIGITAL CONTROL SYSTEM FOR HVAC	
23 11 26	FACILITY LIQUEFIED-PETROLEUM GAS PIPING	CTE
23 21 13	HYDRONIC PIPING	CTE
23 21 16	HYDRONIC PIPING SPECIALTIES	CTE
23 21 23	HYDRONIC PUMPS	CTE
23 31 13	METAL DUCTS	CTE
23 33 00	AIR DUCT ACCESSORIES	CTE
23 34 16	CENTRIFUGAL HVAC FANS	CTE
23 37 00	AIR OUTLETS AND INLETS	CTE
23 52 16	CONDENSING BOILERS	CTE
23 65 13	ADIABATIC CLOSED-CIRCUIT COOLER	CTE
23 72 23.19	ENERGY RECOVERY UNITS	CTE
23 81 26	SPLIT-SYSTEM HEAT PUMPS	CTE
23.81.46	WATER-SOURCE UNITARY HEAT PUMPS	CTE

OMD: CAMP UMATILLA ENLISTED BARRACKS EB3 TABLE OF CONTENTS

DIVISION 26 - ELECTRICAL

26 00 00	COMMON WORK RESULTS FOR ELECTRICAL	CTE
26 05 09	EQUIPMENT WIRING	CTE
26 05 19	LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES	CIE
26 05 26	GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS	CTE
20 05 29	RANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS	CTE
26 05 35	SI FEVES & SI FEVE SEALS FOR ELECTRICAL BACEWAYS &	CTE
20 00 11	CABLING	
26 05 53	IDENTIFICATION FOR ELECTRICAL SYSTEMS	CTE
26 09 23	LIGHTING CONTROL DEVICES	CTE
26 09 25	DIGITAL LIGHTING CONTROLS	CTE
26 24 13	SWITCHBOARDS	CTE
20 24 10		CTE
26 27 26	WIRING DEVICES	CTE
26 28 13	FUSES	CTE
26 28 16	ENCLOSED SWITCHES AND CIRCUIT BREAKERS	CTE
26 33 23	CENTRAL BATTERY EQUIPMENT FOR EMERGENCY LIGHTING	CTE
26 43 00	SURGE PROTECTIVE DEVICES	CTE
26 51 00	LIGHTING	CIE
DIVISION 27	COMMUNICATIONS	
27 05 28	DATHWAYS FOR COMMUNICATIONS SYSTEMS	CTE
27 05 26	CABLE TRAYS FOR COMMUNICATIONS STSTEMS	CTE
27 05 44	SLEEVES AND SLEEVE SEALS FOR COMMUNICATIONS	CTE
	PATHWAYS	
DIVISION 28	ELECTRONIC SAFETY AND SECURITY	
28 12 10	FIRE ALARM AND MASS NOTIFICATION SYSTEMS	CTE
DIVISION 31	EARTHWORK	
31 10 00	SITE CLEARING	HDG
31 20 00	FARTH MOVING	HDG
012000		
DIVISION 32	EXTERIOR IMPROVEMENTS	
32 12 16	ASHPHALT PAVING	HDG
32 13 13	CONCRETE PAVING	HDG
32 17 23	PAVEMENT MARKINGS	HDG
32 84 23	UNDERGROUND SPRINKLERS	
32 92 19		
32 93 00	PLANIS	
DIVISION 33	UTILITIES	
33 11 00	WATER UTILITY DISTRIBUTION PIPING	HDG
33 31 00	SANITARY SEWERAGE	HDG
33 41 00	STORM UTILITY DRAINAGE PIPING	HDG
33 46 00	SUBDRAINAGE	HDG

END OF TABLE OF CONTENTS

PART 1 GENERAL

1.01 SECTION INCLUDES

- A. Liquid applied, gypsum based self-leveling floor underlayment of type and following accessories:
 - 1. Primer for underlayment adhesion to substrate.
 - 2. Sealer for underlayment to provide moisture-resistance and enhance floor finish adhesion.
- Accessories.

1.02 SUBMITTALS

- A. See Section 01 30 00 Administrative Requirements, for submittal procedures.
- B. Product Data: Provide manufacturer's data sheets documenting physical characteristics and product limitations of underlayment materials. Include information on surface preparation, mixing instructions, environmental limitations, and installation instructions.
 - 1. Include product data for sealer, demonstrating compatibility with underlayment and finish floor materials and adhesives.
- C. Manufacturer's Documentation: Verify mix expiration dates are not exceeded.
- D. Certificate of compliance that underlayment materials conform to requirements for the required fire rated assembly.
- E. Certificate: Certify that products meet or exceed specified requirements.
- F. Manufacturer's Instructions.

1.03 QUALITY ASSURANCE

- A. Applicator Qualifications: Company specializing in performing the work of this section, with minimum five years experience.
- B. Provide priming and sealing materials certified by manufacturer to be compatible with substrates, underlayment, and other topical floor finish materials and that will not adversely affect underlayment or interfere with application of floor finishes.

1.04 DELIVERY, STORAGE, AND HANDLING

- A. Store products in manufacturer's unopened packaging until ready for installation.
- B. Keep dry and protect from direct sun exposure, freezing, and ambient temperature greater than 105 degrees F.

1.05 FIELD CONDITIONS

- A. Do not install underlayment until floor penetrations and peripheral work are complete.
- B. Maintain minimum ambient temperatures of 50 degrees F 24 hours before, during and 72 hours after installation of underlayment.
- C. During the curing process, ventilate spaces to remove excess moisture.

1.06 WARRANTY

- A. Refer to Section 01 78 00 Closeout Submittals.
- B. Provide manufacturer's standard limited materials warranty, which includes defects in the manufacture of products provided.
 - 1. Warranty Period: 5 years from date of installation.

PART 2 PRODUCTS

2.01 MANUFACTURERS

- A. Basis of Design; Gypsum Underlayment:
 - 1. Maxxon Corporation Gyp-Crete 2000/3.2k: www.maxxon.com.
- B. Other acceptable manufacturer's:
 - 1. Hacker Industries, Inc: www.hackerindustries.com/#sle.
 - 2. USG, www.usg.com.
- C. Substitutions:
 - 1. See Section 01 60 00 Product Requirements.
 - 2. Required documentation to accompany Substitution Request: If substitution includes a reduction of Compressive Strength from that indicated in "Materials" article below will require submitting written letters from all flooring manufacturer's, providing product to be installed over cast underlayment, indicating manufacturer's full warranty will remain in force when flooring is installed over the proposed substitution, with a reduced compressive strength.

2.02 REGULATORY REQUIREMENTS

A. Conform to applicable code for combustibility or flame spread requirements.

2.03 MATERIALS

- A. Gypsum-Based Underlayment: Gypsum based mix, that when mixed with water in accordance with manufacturer's directions will produce self-leveling underlayment with the following properties:
 - 1. Compressive Strength: Minimum 3000 psi , tested per ASTM C472.
 - 2. Density: Minimum 120 lb/cu ft.
 - 3. Final Set Time: 1 to 2 hours, maximum.
 - 4. Pour Thickness: 1.5 inch at tile and resilient flooring.
 - 5. Surface Burning Characteristics: Flame spread/Smoke developed index of 0/0 in accordance with ASTM E84.
- B. Water: ASTM C1602/C1602M; clean, potable, and not detrimental to underlayment mix materials.
- C. Primer: Manufacturer's recommended type.
- D. Joint and Crack Filler: Latex based filler, as recommended by manufacturer.
- E. Underlayment Primer/Sealer:
 - 1. Standard Primer/Sealer: Comply with specifications outlined in manufacturer's applicator manual, sealer shall be compatible and accepted by manufacturer of finish flooring materials.

2.04 MIXING

- A. Site mix materials in accordance with manufacturer's instructions.
- B. Mix to self-leveling consistency without over-watering.

PART 3 EXECUTION

3.01 EXAMINATION

A. Verify that substrate surfaces are clean, dry, unfrozen, do not contain petroleum byproducts, or other compounds detrimental to underlayment material bond to substrate.

3.02 PREPARATION

- A. Remove substrate surface irregularities. Fill voids and deck joints with filler. Finish smooth.
- B. Vacuum clean surfaces.

OMD: CAMP UMATILLA ENLISTED BARRACKS EB3 CAST UNDERLAYMENT

C. Close floor openings to prevent leakage of slurry during application of underlayment.

3.03 APPLICATION

- A. Install underlayment in accordance with manufacturer's instructions.
- B. Repair holes, rips, tears, and joints in acoustic mat in accordance with manufacturer's recommendations prior to placing gypsum underlayment.
 - 1. Acoustic underlayment shall be sealed to prevent gypsum underlayment from directly contacting structural substrate
- C. Pump or pour material onto substrate. Do not retemper or add water.
 - 1. Pump, move, and screed while the material is still highly flowable.
 - 2. Be careful not to create cold joints.
 - 3. Wear spiked shoes while working in the wet material to avoid leaving marks.
- D. Place to indicated thickness, with top surface level to 1/8 inch in 10 ft.

3.04 CURING

- A. Once underlayment starts to set, prohibit foot traffic until final set has been reached.
- B. Air cure in accordance with manufacturer's instructions.

3.05 APPLICATION - PRIMER/SEALER

- A. Standard Primer/Sealer: Apply Standard Primer/Sealer to areas scheduled to receive glue-down floor goods.
- B. Floor Goods Procedures: Refer to manufacturer's "Procedures for Attaching Finished Floor Goods to Underlayments" brochure for guidelines for installing finished floor goods.
 - 1. Follow manufacturer's recommendations regarding moisture levels and vapor retarders before proceeding with installation of finish floor system.
 - 2. Any floor areas where the surface has been damaged shall be cleaned and sealed regardless of floor covering or location.
 - 3. Where floor goods manufacturers require special adhesive or installation systems, their requirements supersede these recommendations.

3.06 FIELD QUALITY CONTROL

- A. An independent testing agency will perform field inspection and testing, as specified in Section 01 40 00 Quality Requirements.
- B. Placed Material: Agency will inspect and test for compliance with specification requirements.
 - 1. Prepare compression test cubes for each placement of 1,000 square feet or less in accordance with ASTM C472 Modified.
- C. Prior to installation of finish flooring materials gypsum substrate shall be tested for moisture content in accordance with Section 09 05 61 - Common Work Results for Flooring Preparation.

3.07 PROTECTION

- A. Protect against direct sunlight, heat, and wind; prevent rapid drying to avoid shrinkage and cracking.
- B. Do not permit traffic over unprotected floor underlayment surfaces.

END OF SECTION

PART 1 GENERAL

1.01 SECTION INCLUDES

A. Corner guards.

1.02 SUBMITTALS

- A. See Section 01 30 00 Administrative Requirements, for submittal procedures.
- B. Product Data: Indicate physical dimensions.
- C. Samples: Submit two sections of bumper rail, 24 inch long, illustrating component design, configuration, color and finish.
- D. Manufacturer's Instructions: Indicate special procedures, perimeter conditions requiring special attention.

1.03 PROJECT CONDITIONS

A. Coordinate the work with wall or partition sections for installation of concealed blocking or anchor devices.

PART 2 PRODUCTS

2.01 MANUFACTURERS

- A. Wall and Corner Guards:
 - 1. Basis of Design: Construction Specialties, Inc: www.c-sgroup.com.
 - 2. Babcock-Davis: www.babcockdavis.com/sle.
 - 3. Construction Specialties, Inc: www.c-sgroup.com.

2.02 COMPONENTS

- A. Wall Covering (WP-1): Engineered PETG; rigid sheet, high-impact, manufacturer's suede texture.
 - 1. Product: Construction Specialties; Acrovyn Panel
 - 2. Thickness: Nominal 0.040 inch.
 - 3. Sheet size: 4 by 8 feet.
- B. Stainless Steel Corner Guards Surface Mounted:
 - 1. Material: Type 304 stainless steel; 16 gauge.
 - 2. Size: 3 x 3-1/2 x 48 inches.
 - 3. Corner: 1/8 inch radius.
 - 4. Attachment: Stainless steel flat head screws of appropriate size, type, and spacing for attachment condition.
- C. Corner Guards Surface Mounted:
 - 1. Width of Wings: 2 inches.
 - 2. Corner: Square.
 - 3. Color: As selected from manufacturer's standard colors.
 - 4. Length: One piece.

2.03 FABRICATION

- A. Fabricate components with tight joints, corners and seams.
- B. Pre-drill holes for attachment.
- C. Form end trim closure by capping and finishing smooth.

PART 3 EXECUTION

3.01 EXAMINATION

A. Verify that rough openings, concealed blocking, and anchors are correctly sized and located.

OMD: CAMP UMATILLA ENLISTED BARRACKS EB3 WALL AND CORNER GUARDS

B. Verify that field measurements are as indicated on drawings.

3.02 INSTALLATION

- A. Install components in accordance with manufacturer's instructions, level and plumb, secured rigidly in position to wall framing members only.
- B. Position corner guard <u>6</u> inches above finished floor to <u>848</u> inches high.

3.03 TOLERANCES

- A. Maximum Variation From Required Height: 1/4 inch.
- B. Maximum Variation From Level or Plane For Visible Length: 1/4 inch.

END OF SECTION

PART 1 GENERAL

1.01 SECTION INCLUDES

- A. Fire extinguishers, by Owner.
- B. Fire extinguisher cabinets.
- C. Accessories.

1.02 SUBMITTALS

- A. See Section 01 30 00 Administrative Requirements, for submittal procedures.
- B. Shop Drawings: Indicate locations of cabinets and cabinet physical dimensions.
- C. Manufacturer's Certificate: Certify that products meet or exceed specified requirements.
- D. Maintenance Data: Include test, refill or recharge schedules and re-certification requirements.

1.03 FIELD CONDITIONS

A. Do not install extinguishers when ambient temperature may cause freezing of extinguisher ingredients.

PART 2 PRODUCTS

2.01 MANUFACTURERS

A. Fire Extinguishers:

- 1. Activar Construction Products Group, Inc. JL Industries: www.activarcpg.com/#sle.
- 2. Ansul, a Tyco Business: www.ansul.com/#sle.
- 3. Kidde, a unit of United Technologies Corp: www.kidde.com/#sle.
- 4. Larsen's Manufacturing Co: www.larsensmfg.com.
- 5. Pyro-Chem, a Tyco Business: www.pyrochem.com/#sle.

B.A. Fire Extinguisher Cabinets and Accessories:

- 1. Activar Construction Products Group, Inc. JL Industries: www.activarcpg.com/#sle.
- 2. Ansul, a Tyco Business: www.ansul.com.
- 3. Larsen's Manufacturing Co: www.larsensmfg.com/#sle.
- 4. Nystrom, Inc: www.nystrom.com/#sle.
- 5. Pyro-Chem, a Tyco Business: www.pyrochem.com.

2.02 PERFORMANCE REQUIREMENTS

- A. Conform to NFPA 10.
- B. Provide extinguishers classified and labeled by Underwriters Laboratories Inc. for the purpose specified and indicated.

2.03 FIRE EXTINGUISHERS

- A. Fire Extinguishers General: Provided by Owner, verify size of fire extinguisher.
- A. Fire Extinguishers General: Comply with product requirements of NFPA 10 and applicable codes, whichever is more stringent.
- B. Dry Chemical Type Fire Extinguishers: Cast steel Cast steel tank, with pressure gage.
 - 1. Class A:B:C B:C.
 - 2. Size 10 10, UL Label 4A-60BC.
 - 3. Finish: Baked enamel, red color Baked enamel, red color.
- C. Dry Chemical Type Fire Extinguishers: Stainless steel tank, with pressure gage.
 - 1. Size: 1.6 gallons.
 - 2. Finish: Polished stainless steel.

2.04 FIRE EXTINGUISHER CABINETS

- A. Cabinet Construction: Fire rated where occurs in rated walls (corridors).
 - 1. Formed primed steel sheet; 0.036 inch thick base metal.
- B. Cabinet Configuration: Semi-recessed Surface mounted type.
 - 1. Size to accommodate fire extinguisher.
 - 2. Trim: Stainless steel. Returned to wall surface, with 2.5 inch projection, 1.0 inch wide face.
- C. Door: 0.036 inch thick stainless steel, reinforced for flatness and rigidity; latch. Hinge doors for 180 degree opening with continuous piano hinge. Provide nylon catch.
- D. Door Glazing: Acrylic plastic, clear, 1/8 inch thick, flat shape and set in resilient channel glazing gasket.
- E. Cabinet Mounting Hardware: Appropriate to cabinet, with pre-drilled holes for placement of anchors.
- F. Weld, fill, and grind components smooth.
- G. Finish of Cabinet Exterior Trim and Door: No. 4 Brushed stainless steel.
- H. Finish of Cabinet Interior: White colored enamel.

2.05 ACCESSORIES

A. Extinguisher Brackets: Formed steel, chrome-plated. B.1. Seismic bracket for extinguisher.

PART 3 EXECUTION

3.01 EXAMINATION

- A. Verify existing conditions before starting work.
- B. Verify rough openings for cabinet are correctly sized and located.

3.02 INSTALLATION

- A. Install in accordance with manufacturer's instructions.
- B. Secure rigidly in place.
- C. Place extinguishers in cabinets.

END OF SECTION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. In-line, sealless centrifugal pumps.
 - 2. Horizontally mounted, in-line, separately coupled centrifugal pumps.
 - 3. Horizontally mounted, in-line, close-coupled centrifugal pumps.
 - 4. Vertically mounted, in-line, close-coupled centrifugal pumps.
- B. Related Requirements:
 - 1. Section 221123.13 "Domestic-Water Packaged Booster Pumps" for booster systems.
 - 2. Section 331113 "Potable Water Supply Wells" for well pumps.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product. Include construction materials, rated capacities, certified performance curves with operating points plotted on curves, operating characteristics, electrical characteristics, and furnished specialties and accessories.

1.4 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For inline, domestic-water pumps to include in operation and maintenance manuals.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Retain shipping flange protective covers and protective coatings during storage.
- B. Protect bearings and couplings against damage.
- C. Comply with pump manufacturer's written instructions for handling.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. UL Compliance: UL 778 for motor-operated water pumps.
- C. Drinking Water System Components Health Effects and Drinking Water System Components Lead Content Compliance: NSF 61 and NSF 372.
- D. Seismic Performance: Inline, domestic-water pumps shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 - 1. The term "withstand" means "the unit will remain in place without separation of any parts when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

2.2 IN-LINE, SEALLESS CENTRIFUGAL PUMPS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Flo Fab Inc.
 - 2. Grundfos Pumps Corp.
 - 3. TACO Comfort Solutions, Inc.
 - 4. WILO USA LLC WILO Canada Inc.
 - 5. Insert manufacturer's name.
- B. Pump Construction:
 - 1. Pump and Motor Assembly: Hermetically sealed, replaceable-cartridge type with motor and impeller on common shaft and designed for installation with pump and motor shaft horizontal.
 - 2. Minimum Working Pressure: 125 psig.
 - 3. Maximum Continuous Operating Temperature: 220 deg F.
 - 4. Casing: Cast iron, Bronze, Stainless steel, with threaded or companion-flange connections.
 - 5. Impeller: stainless steel.

2.3 HORIZONTALLY MOUNTED, IN-LINE, SEPARATELY COUPLED CENTRIFUGAL PUMPS

A. Description: Factory-assembled and -tested, in-line, single-stage, separately coupled, overhung-impeller centrifugal pumps designed for installation with pump and motor shafts mounted horizontal.

- B. Manufacturers: Subject to compliance with requirements provide products by one of the following:
 - 1. Bell & Gossett; a Xylem brand.
 - 2. Marshall Engineered Products Co.
 - 3. TACO Comfort Solutions, Inc.
 - 4. Thrush Co. Inc.
 - 5. Insert manufacturer's name.
- C. Pump Construction:
 - 1. Casing:
 - Radially split with threaded companion-flange connections for pumps with NPS 2 pipe connections and flanged connections for pumps with NPS 2-1/2 pipe connections.
 - b. Built to permit servicing of pump internals without disturbing the casing or the suction and discharge piping.
 - c. Gauge port tappings at suction and discharge nozzles.
 - 2. Impeller: [Bronze] [or] [stainless steel], statically and dynamically balanced, closed, and keyed to shaft.
 - 3. Shaft and Shaft Sleeve: Steel shaft, with copper-alloy shaft sleeve.
 - 4. Shaft Coupling: Flexible, capable of absorbing torsional vibration and shaft misalignment.
 - 5. Seal: Mechanical
 - 6. Bearings: Grease-lubricated or permanently lubricated ball type.
 - 7. Minimum Working Pressure: 125 psig
 - 8. Continuous Operating Temperature: 200 deg F.
- D. Motor: Single speed, with permanently lubricated ball bearings.

2.4 HORIZONTALLY MOUNTED, IN-LINE, CLOSE-COUPLED CENTRIFUGAL PUMPS

- A. Description: Factory-assembled and -tested, in-line, single-stage, close-coupled, overhung-impeller centrifugal pumps designed for installation with pump and motor shaft mounted horizontal.
- B. Manufacturers: Subject to compliance with requirements provide products by one of the following:
 - 1. Alyan Pump Company.
 - 2. Bell & Gossett; a Xylem brand.
 - 3. Marshall Engineered Products Co.
 - 4. Pentair Pump Group.
 - 5. TACO Comfort Solutions, Inc.
 - 6. Thrush Co. Inc.
 - 7. Insert manufacturer's name.
- C. Pump Construction:
 - 1. Casing:

- a. Radially split with threaded companion-flange connections for pumps with NPS 2 pipe connections and flanged connections for pumps with NPS 2-1/2 pipe connections.
- b. Built to permit servicing of pump internals without disturbing the casing or the suction and discharge piping.
- c. Gauge port tappings at suction and discharge nozzles.
- 2. Impeller: statically and dynamically balanced, closed, and keyed to shaft.
- 3. Shaft and Shaft Sleeve: Steel shaft with deflector, with copper-alloy shaft sleeve. Include water slinger on shaft between motor and seal.
- 4. Shaft Coupling: Flexible, capable of absorbing torsional vibration and shaft misalignment.
- 5. Seal: Mechanical
- 6. Bearings: Grease-lubricated or permanently lubricated ball type.
- 7. Minimum Working Pressure: 175 psig
- 8. Continuous Operating Temperature: 225 deg F
- D. Motor: Single speed, with grease-lubricated ball bearings.

2.5 VERTICALLY MOUNTED, IN-LINE, CLOSE-COUPLED CENTRIFUGAL PUMPS

- A. Description: Factory-assembled and -tested, in-line, single-stage, close-coupled, overhung-impeller centrifugal pumps designed for installation with pump and motor shaft mounted vertical.
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Alyan Pump Company.
 - 2. Armstrong Pumps, Inc.
 - 3. Bell & Gossett; a Xylem brand.
 - 4. Flo Fab Inc.
 - 5. Grundfos Pumps Corp.
 - 6. Marshall Engineered Products Co.
 - 7. PACO Pumps; Grundfos Pumps Corporation, USA.
 - 8. Pentair Pump Group.
 - 9. TACO Comfort Solutions, Inc.
 - 10. Thrush Co. Inc.
 - 11. Weinman Division.
 - 12. Insert manufacturer's name.
- C. Pump Construction:
 - 1. Casing: Radially split, with wear rings and threaded companion-flange connections for pumps with NPS 2 pipe connections and flanged connections for pumps with NPS 2-1/2 pipe connections.
 - 2. Impeller: statically and dynamically balanced, closed, and keyed to shaft.
 - 3. Shaft and Shaft Sleeve: stainless-steel shaft, with copper-alloy shaft sleeve.
 - 4. Shaft Coupling: Flexible or rigid type if pump is provided with coupling.
 - 5. Seal: Mechanical, with carbon-steel rotating ring, stainless-steel spring, ceramic seat, and rubber bellows and gasket. Include water slinger on shaft between motor and seal.
 - 6. Bearings: Oil-lubricated; bronze-journal or ball type.

- 7. Minimum Working Pressure: 175 psig.
- 8. Continuous Operating Temperature: 225 deg F.
- D. Motor: Single speed, with grease-lubricated ball bearings; rigidly mounted to pump casing.

2.6 MOTORS

- A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 220513 "Common Motor Requirements for Plumbing Equipment."
 - 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.

2.7 CONTROLS

- A. Pressure Switches: Electric, adjustable for control of water-supply pump.
 - 1. Type: Water-immersion pressure sensor, for installation in piping.
 - 2. Enclosure: NEMA 250, Type 4X
 - 3. Operation of Pump: On or off.
 - 4. Transformer: Provide if required.
 - 5. Power Requirement: 24 V ac.
- B. Thermostats: Electric; adjustable for control of hot-water circulation pump.
 - 1. Type: Water-immersion temperature sensor, for installation in piping.
 - 2. Range: 50 to 125 deg F.
 - 3. Enclosure: NEMA 250, Type 4X.
 - 4. Operation of Pump: On or off.
 - 5. Transformer: Provide if required.
 - 6. Power Requirement: 24 V ac.
- C. Timers: Electric, for control of hot-water circulation pump.
 - 1. Type: Programmable, seven-day clock with manual override on-off switch.
 - 2. Enclosure: NEMA 250, Type 1suitable for wall mounting.
 - 3. Operation of Pump: On or off.
 - 4. Transformer: Provide if required.
 - 5. Power Requirement 24 V ac
 - 6. Programmable Sequence of Operation: Up to two on-off cycles each day for seven days.
- D. Time-Delay Relays: Electric, for control of hot-water circulation pump between water heater and connected hot-water storage tank.
 - 1. Type: Adjustable time-delay relay.
 - 2. Range: Up to five minutes.
 - 3. Setting: Five minutes.
 - 4. Enclosure: NEMA 250, Type 4X

- 5. Operation of Pump: On or off.
- 6. Transformer: Provide if required.
- 7. Power Requirement: 24 V ac.
- 8. Programmable Sequence of Operation: Limit pump operation to periods of burner operation, plus maximum five minutes after the burner stops.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in for domestic-water-piping system to verify actual locations of piping connections before pump installation.

3.2 PUMP INSTALLATION

- A. Comply with HI 1.4.
- B. Mount pumps in orientation complying with manufacturer's written instructions.
- C. Pump Mounting:
 - 1. Install vertically mounted, in-line, close-coupled centrifugal pumps with cast-iron base mounted on concrete base using vibration isolation type and deflection.
 - Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of concrete base.
 - 3. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
 - 4. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 5. Install anchor bolts to elevations required for proper attachment to supported equipment.
- D. Install continuous-thread hanger rods and vibration isolation of size required to support pump weight.
 - 1. Comply with requirements for hangers and supports specified in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."
- E. Install pressure switches in water-supply piping.
- F. Install thermostats in hot-water return piping.
- G. Install time-delay relays in piping between water heaters and hot-water storage tanks.

3.3 PIPING CONNECTIONS

A. Comply with requirements for piping specified in Section 221116 "Domestic Water Piping." Drawings indicate general arrangement of piping, fittings, and specialties.

- B. Where installing piping adjacent to inline, domestic-water pumps, allow space for service and maintenance.
- C. Connect domestic-water piping to pumps. Install suction and discharge piping equal to or greater than size of pump nozzles.
 - 1. Install flexible connectors adjacent to pumps in suction and discharge piping of the following pumps:
 - a. Horizontally mounted, in-line, separately coupled centrifugal pumps.
 - b. Horizontally mounted, in-line, close-coupled centrifugal pumps.
 - c. Vertically mounted, in-line, close-coupled centrifugal pumps.
 - d. Comply with requirements for flexible connectors specified in Section 221116 "Domestic Water Piping."
- D. Install shutoff valve and strainer on suction side of each pump, and check, shutoff, and throttling valves on discharge side of each pump. Install valves same size as connected piping. Comply with requirements for strainers specified in Section 221119 "Domestic Water Piping Specialties."
 - Install pressure gauge at suction of each pump and pressure gauge at discharge of each pump. Install at integral pressure-gauge tappings where provided or install pressure-gauge connectors in suction and discharge piping around pumps. Comply with requirements for pressure gauges and snubbers specified in Section 220519 "Meters and Gages for Plumbing Piping."

3.4 CONTROL CONNECTIONS

- A. Install control and electrical power wiring to field-mounted control devices.
- B. Connect control wiring between temperature controllers and devices.

3.5 IDENTIFICATION

A. Identify system components. Comply with requirements for identification specified in Section 220553 "Identification for Plumbing Piping and Equipment" for identification of pumps.

3.6 FIELD QUALITY CONTROL

- A. Tests and Inspections:
 - 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 - 2. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- B. Inline, domestic-water pump will be considered defective if it does not pass tests and inspections.

C. Prepare test and inspection reports.

3.7 STARTUP SERVICE

- A. Perform startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions.
 - 2. Check piping connections for tightness.
 - 3. Clean strainers on suction piping.
 - 4. Set pressure switches, thermostats, timers, and time-delay relays for automatic starting and stopping operation of pumps.
 - 5. Perform the following startup checks for each pump before starting:
 - a. Verify bearing lubrication.
 - b. Verify that pump is free to rotate by hand and that pump for handling hot liquid is free to rotate with pump hot and cold. If pump is bound or drags, do not operate until cause of trouble is determined and corrected.
 - c. Verify that pump is rotating in the correct direction.
 - 6. Prime pump by opening suction valves and closing drains, and prepare pump for operation.
 - 7. Start motor.
 - 8. Open discharge valve slowly.
 - 9. Adjust temperature settings on thermostats.
 - 10. Adjust timer settings.

3.8 ADJUSTING

- A. Adjust inline, domestic-water pumps to function smoothly, and lubricate as recommended by manufacturer.
- B. Adjust initial temperature set points.
- C. Set field-adjustable switches and circuit-breaker trip ranges as indicated.

END OF SECTION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. DDC system for monitoring and controlling of HVAC systems.
 - 2. Delivery of selected control devices to equipment and systems manufacturers for factory installation and to HVAC systems installers for field installation.
- B. Related Requirements:
 - 1. Communications Cabling:
 - a. Section 260523 "Control-Voltage Electrical Power Cables" for balanced twisted pair communications cable.
 - b. Section 271513 "Communications Copper Horizontal Cabling" for balanced twisted pair communications cable.
 - c. Section 271523 "Communications Optical Fiber Horizontal Cabling" for optical fiber communications cable.
 - 2. Raceways:
 - a. Section 260533 "Raceways and Boxes for Electrical Systems" for raceways for low-voltage control cable.
 - b. Section 270528 "Pathways for Communications Systems" for raceways for balanced twisted pair cabling and optical fiber cable.
 - 3. Section 260553 "Identification for Electrical Systems" for identification requirements for electrical components.
 - 4. Section 270553 "Identification for Communications Systems" for identification requirements for communications components.

1.3 DEFINITIONS

- A. Algorithm: A logical procedure for solving a recurrent mathematical problem. A prescribed set of well-defined rules or processes for solving a problem in a finite number of steps.
- B. Analog: A continuously varying signal value, such as current, flow, pressure, or temperature.
- C. BACnet Specific Definitions:

- 1. BACnet: Building Automation Control Network Protocol, ASHRAE 135. A communications protocol allowing devices to communicate data over and services over a network.
- 2. BACnet Interoperability Building Blocks (BIBBs): BIBB defines a small portion of BACnet functionality that is needed to perform a particular task. BIBBs are combined to build the BACnet functional requirements for a device.
- 3. BACnet/IP: Defines and allows using a reserved UDP socket to transmit BACnet messages over IP networks. A BACnet/IP network is a collection of one or more IP subnetworks that share the same BACnet network number.
- 4. BACnet Testing Laboratories (BTL): Organization responsible for testing products for compliance with ASHRAE 135, operated under direction of BACnet International.
- 5. PICS (Protocol Implementation Conformance Statement): Written document that identifies the particular options specified by BACnet that are implemented in a device.
- D. Binary: Two-state signal where a high signal level represents ON" or "OPEN" condition and a low signal level represents "OFF" or "CLOSED" condition. "Digital" is sometimes used interchangeably with "Binary" to indicate a two-state signal.
- E. Controller: Generic term for any standalone, microprocessor-based, digital controller residing on a network, used for local or global control. Three types of controllers are indicated: Network Controller, Programmable Application Controller, and Application-Specific Controller.
- F. Control System Integrator: An entity that assists in expansion of existing enterprise system and support of additional operator interfaces to I/O being added to existing enterprise system.
- G. COV: Changes of value.
- H. DDC System Provider: Authorized representative of, and trained by, DDC system manufacturer and responsible for execution of DDC system Work indicated.
- I. Distributed Control: Processing of system data is decentralized and control decisions are made at subsystem level. System operational programs and information are provided to remote subsystems and status is reported back. On loss of communication, subsystems shall be capable of operating in a standalone mode using the last best available data.
- J. DOCSIS: Data-Over Cable Service Interface Specifications.
- K. E/P: Voltage to pneumatic.
- L. Gateway: Bidirectional protocol translator that connects control systems that use different communication protocols.
- M. HLC: Heavy load conditions.

OMD: CAMP UMATILLA PAGE 3 ENLISTED BARRACKS EB3 SECTION 23 09 23 DIRECT DIGITAL CONTROL SYSTEM FOR HVAC

- N. I/O: System through which information is received and transmitted. I/O refers to analog input (AI), binary input (BI), analog output (AO) and binary output (BO). Analog signals are continuous and represent control influences such as flow, level, moisture, pressure, and temperature. Binary signals convert electronic signals to digital pulses (values) and generally represent two-position operating and alarm status. "Digital," (DI and (DO), is sometimes used interchangeably with "Binary," (BI) and (BO), respectively.
- O. I/P: Current to pneumatic.
- P. LAN: Local area network.
- Q. LNS: LonWorks Network Services.
- R. LON Specific Definitions:
 - 1. FTT-10: Echelon Transmitter-Free Topology Transceiver.
 - 2. LonMark: Association comprising suppliers and installers of LonTalk products. Association provides guidelines for implementing LonTalk protocol to ensure interoperability through a standard or consistent implementation.
 - 3. LonTalk: An open standard protocol developed by the Echelon Corporation that uses a "Neuron Chip" for communication. LonTalk is a register trademark of Echelon.
 - 4. LonWorks: Network technology developed by Echelon.
 - 5. Node: Device that communicates using CEA-709.1-C protocol and that is connected to a CEA-709.1-C network.
 - 6. Node Address: The logical address of a node on the network, consisting of a Domain number, Subnet number, and Node number. "Node number" portion of an address is a number assigned to device during installation, is unique within a subnet, and is not a factory-set unique Node ID.
 - 7. Node ID: A unique 48-bit identifier assigned at factory to each CEA-709.1-C device. Sometimes called a "Neuron ID."
 - 8. Program ID: An identifier (number) stored in a device (usually EEPROM) that identifies node manufacturer, functionality of device (application and sequence), transceiver used, and intended device usage.
 - 9. Standard Configuration Property Type (SCPT): Pronounced "skip-it." A standard format type maintained by LonMark International for configuration properties.
 - 10. Standard Network Variable Type (SNVT): Pronounced "snivet." A standard format type maintained by LonMark used to define data information transmitted and received by individual nodes. "SNVT" is used in two ways. It is an acronym for "Standard Network Variable Type" and is often used to indicate a network variable itself (i.e., it can mean "a network variable of a standard network variable type").
 - 11. Subnet: Consists of a logical grouping of up to 127 nodes, where logical grouping is defined by node addressing. Each subnet is assigned a number, which is unique within a Domain. See "Node Address."
 - 12. TP/FT-10: Free Topology Twisted Pair network defined by CEA-709.3 and is most common media type for a CEA-709.1-C control network.
 - 13. TP/XF-1250: High-speed, 1.25-Mbps, twisted-pair, doubly terminated bus network defined by "LonMark Interoperability Guidelines" typically used only to connect multiple TP/FT-10 networks.
 - 14. User-Defined Configuration Property Type (UCPT): Pronounced "U-Keep-It." A Configuration Property format type that is defined by device manufacturer.

- 15. User-Defined Network Variable Type (UNVT): Network variable format defined by device manufacturer. UNVTs create non-standard communications that other vendors' devices may not correctly interpret and may negatively impact system operation. UNVTs are not allowed.
- S. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control, signaling power-limited circuits.
- T. Mobile Device: A data-enabled phone or tablet computer capable of connecting to a cellular data network and running a native control application or accessing a web interface.
- U. Modbus TCP/IP: An open protocol for exchange of process data.
- V. MS/TP: Master-slave/token-passing, IEE 8802-3. Datalink protocol LAN option that uses twisted-pair wire for low-speed communication.
- W. MTBF: Mean time between failures.
- X. Network Controller: Digital controller, which supports a family of programmable application controllers and application-specific controllers, that communicates on peer-to-peer network for transmission of global data.
- Y. Network Repeater: Device that receives data packet from one network and rebroadcasts it to another network. No routing information is added to protocol.
- Z. Peer to Peer: Networking architecture that treats all network stations as equal partners.
- AA. POT: Portable operator's terminal.
- BB. PUE: Performance usage effectiveness.
- CC. RAM: Random access memory.
- DD. RF: Radio frequency.
- EE. Router: Device connecting two or more networks at network layer.
- FF. Server: Computer used to maintain system configuration, historical and programming database.
- GG. TCP/IP: Transport control protocol/Internet protocol.
- HH. UPS: Uninterruptible power supply.
- II. USB: Universal Serial Bus.
- JJ. User Datagram Protocol (UDP): This protocol assumes that the IP is used as the underlying protocol.
- KK. VAV: Variable air volume.
- LL. WLED: White light emitting diode.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product include the following:
 - 1. Construction details, material descriptions, dimensions of individual components and profiles, and finishes.
 - 2. Operating characteristics, electrical characteristics, and furnished accessories indicating process operating range, accuracy over range, control signal over range, default control signal with loss of power, calibration data specific to each unique application, electrical power requirements, and limitations of ambient operating environment, including temperature and humidity.
 - 3. Product description with complete technical data, performance curves, and product specification sheets.
 - 4. Installation, operation and maintenance instructions including factors effecting performance.
 - 5. Bill of materials of indicating quantity, manufacturer, and extended model number for each unique product.
 - a. Servers.
 - b. Routers.
 - c. DDC controllers.
 - d. Enclosures.
 - e. Electrical power devices.
 - f. Accessories.
 - g. Instruments.
 - h. Control dampers and actuators.
 - i. Control valves and actuators.
 - 6. When manufacturer's product datasheets apply to a product series rather than a specific product model, clearly indicate and highlight only applicable information.
 - 7. Each submitted piece of product literature shall clearly cross reference specification and drawings that submittal is to cover.
- B. Software Submittal:
 - 1. Cross-referenced listing of software to be loaded on each operator workstation, server, gateway, and DDC controller.
 - 2. Description and technical data of all software provided, and cross-referenced to products in which software will be installed.
 - 3. Operating system software, operator interface and programming software, color graphic software, DDC controller software, maintenance management software, and third-party software.
 - 4. Include a flow diagram and an outline of each subroutine that indicates each program variable name and units of measure.
 - 5. Listing and description of each engineering equation used with reference source.
 - 6. Listing and description of each constant used in engineering equations and a reference source to prove origin of each constant.
 - 7. Description of operator interface to alphanumeric and graphic programming.
 - 8. Description of each network communication protocol.
 - 9. Description of system database, including all data included in database, database capacity and limitations to expand database.
 - 10. Description of each application program and device drivers to be generated, including specific information on data acquisition and control strategies showing their relationship to system timing, speed, processing burden and system throughout.

- 11. Controlled Systems: Instrumentation list with element name, type of device, manufacturer, model number, and product data. Include written description of sequence of operation including schematic diagram.
- C. Sustainable Design Submittals:
 - 1. ENERGY STAR: Product Data for indicated products, showing compliance with requirements for ENERGY STAR product labeling.
 - 2. Product Data: For adhesives, indicating VOC content.
 - 3. Laboratory Test Reports: For adhesives, indicating compliance with requirements for low-emitting materials.
- D. Shop Drawings:
 - 1. General Requirements:
 - a. Include cover drawing with Project name, location, Owner, Architect, Contractor and issue date with each Shop Drawings submission.
 - b. Include a drawing index sheet listing each drawing number and title that matches information in each title block.
 - 2. Include plans, elevations, sections, and mounting details where applicable.
 - 3. Include details of product assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 4. Detail means of vibration isolation and show attachments to rotating equipment.
 - 5. Plan Drawings indicating the following:
 - a. Screened backgrounds of walls, structural grid lines, HVAC equipment, ductwork and piping.
 - b. Room names and numbers with coordinated placement to avoid interference with control products indicated.
 - c. Each desktop workstation, server, gateway, router, DDC controller, control panel instrument connecting to DDC controller, and damper and valve connecting to DDC controller, if included in Project.
 - d. Exact placement of products in rooms, ducts, and piping to reflect proposed installed condition.
 - e. Network communication cable and raceway routing.
 - f. Information, drawn to scale.
 - g. Proposed routing of wiring, cabling, conduit, and tubing, coordinated with building services for review before installation.
 - 6. Schematic drawings for each controlled HVAC system indicating the following:
 - a. I/O points labeled with point names shown. Indicate instrument range, normal operating set points, and alarm set points. Indicate fail position of each damper and valve, if included in Project.
 - b. I/O listed in table format showing point name, type of device, manufacturer, model number, and cross-reference to product data sheet number.
 - c. A graphic showing location of control I/O in proper relationship to HVAC system.
 - d. Wiring diagram with each I/O point having a unique identification and indicating labels for all wiring terminals.
 - e. Unique identification of each I/O that shall be consistently used between different drawings showing same point.

- f. Elementary wiring diagrams of controls for HVAC equipment motor circuits including interlocks, switches, relays and interface to DDC controllers.g. Narrative sequence of operation.
- h. Graphic sequence of operation, showing all inputs and output logical blocks.
- 7. Control panel drawings indicating the following:
 - a. Panel dimensions, materials, size, and location of field cable, raceways, and tubing connections.
 - b. Interior subpanel layout, drawn to scale and showing all internal components, cabling and wiring raceways, nameplates and allocated spare space.
 - c. Front, rear, and side elevations and nameplate legend.
 - d. Unique drawing for each panel.
- 8. DDC system network riser diagram indicating the following:
 - a. Each device connected to network with unique identification for each.
 - b. Interconnection of each different network in DDC system.
 - c. For each network, indicate communication protocol, speed and physical means of interconnecting network devices, such as copper cable type, or optical fiber cable type. Indicate raceway type and size for each.
 - d. Each network port for connection of an operator workstation or other type of operator interface with unique identification for each.
- 9. DDC system electrical power riser diagram indicating the following:
 - a. Each point of connection to field power with requirements (volts/phase//hertz/amperes/connection type) listed for each.
 - b. Each control power supply including, as applicable, transformers, powerline conditioners, transient voltage suppression and high filter noise units, DC power supplies, and UPS units with unique identification for each.
 - c. Each product requiring power with requirements (volts/phase//hertz/amperes/connection type) listed for each.
 - d. Power wiring type and size, race type, and size for each.
- 10. Monitoring and control signal diagrams indicating the following:
 - a. Control signal cable and wiring between controllers and I/O.
 - b. Point-to-point schematic wiring diagrams for each product.
 - c. Control signal tubing to sensors, switches and transmitters.
 - d. Process signal tubing to sensors, switches and transmitters.
- 11. Color graphics indicating the following:
 - a. Itemized list of color graphic displays to be provided.
 - b. For each display screen to be provided, a true color copy showing layout of pictures, graphics and data displayed.
 - c. Intended operator access between related hierarchical display screens.
- E. System Description:

- 1. Full description of DDC system architecture, network configuration, operator interfaces and peripherals, servers, controller types and applications, gateways, routers and other network devices, and power supplies.
- 2. Complete listing and description of each report, log and trend for format and timing and events which initiate generation.
- 3. System and product operation under each potential failure condition including, but not limited to, the following:
 - a. Loss of power.
 - b. Loss of network communication signal.
 - c. Loss of controller signals to inputs and outpoints.
 - d. Operator workstation failure.
 - e. Server failure.
 - f. Gateway failure.
 - g. Network failure
 - h. Controller failure.
 - i. Instrument failure.
 - j. Control damper and valve actuator failure.
- 4. Complete bibliography of documentation and media to be delivered to Owner.
- 5. Description of testing plans and procedures.
- 6. Description of Owner training.
- F. Delegated-Design Submittal: For DDC system products and installation indicated as being delegated.
 - 1. Supporting documentation showing DDC system design complies with performance requirements indicated, including calculations and other documentation necessary to prove compliance.
 - 2. Schedule and design calculations for control dampers and actuators.
 - a. Flow at Project design and minimum flow conditions.
 - b. Face velocity at Project design and minimum airflow conditions.
 - c. Pressure drop across damper at Project design and minimum airflow conditions.
 - d. AMCA 500-D damper installation arrangement used to calculate and schedule pressure drop, as applicable to installation.
 - e. Maximum close-off pressure.
 - f. Leakage airflow at maximum system pressure differential (fan close-off pressure).
 - g. Torque required at worst case condition for sizing actuator.
 - h. Actuator selection indicating torque provided.
 - i. Actuator signal to control damper (on, close or modulate).
 - j. Actuator position on loss of power.
 - k. Actuator position on loss of control signal.
 - 3. Schedule and design calculations for control valves and actuators.
 - a. Flow at Project design and minimum flow conditions.
 - b. Pressure-differential drop across valve at Project design flow condition.
 - c. Maximum system pressure-differential drop (pump close-off pressure) across valve at Project minimum flow condition.
 - d. Design and minimum control valve coefficient with corresponding valve position.
 - e. Maximum close-off pressure.

OMD: CAMP UMATILLA PAGE 9 ENLISTED BARRACKS EB3 SECTION 23 09 23 DIRECT DIGITAL CONTROL SYSTEM FOR HVAC

- f. Leakage flow at maximum system pressure differential.
- g. Torque required at worst case condition for sizing actuator.
- h. Actuator selection indicating torque provided.
- i. Actuator signal to control damper (on, close or modulate).
- j. Actuator position on loss of power.
- k. Actuator position on loss of control signal.
- 4. Schedule and design calculations for selecting flow instruments.
 - a. Instrument flow range.
 - b. Project design and minimum flow conditions with corresponding accuracy, control signal to transmitter and output signal for remote control.
 - c. Extreme points of extended flow range with corresponding accuracy, control signal to transmitter and output signal for remote control.
 - d. Pressure-differential loss across instrument at Project design flow conditions.
 - e. Where flow sensors are mated with pressure transmitters, provide information for each instrument separately and as an operating pair.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data:
 - 1. Systems Provider Qualification Data:
 - a. Resume of project manager assigned to Project.
 - b. Resumes of application engineering staff assigned to Project.
 - c. Resumes of installation and programming technicians assigned to Project.
 - d. Resumes of service technicians assigned to Project.
 - e. Brief description of past project including physical address, floor area, number of floors, building system cooling and heating capacity and building's primary function.
 - f. Description of past project DDC system, noting similarities to Project scope and complexity indicated.
 - g. Names of staff assigned to past project that will also be assigned to execute work of this Project.
 - h. Owner contact information for past project including name, phone number, and e-mail address.
 - i. Contractor contact information for past project including name, phone number, and e-mail address.
 - j. Architect or Engineer contact information for past project including name, phone number, and e-mail address.
 - 2. Manufacturer's qualification data.
 - 3. Testing agency's qualifications data.
- B. Product Certificates:
 - 1. Data Communications Protocol Certificates: Certifying that each proposed DDC system component complies with ASHRAE 135.
- C. Product Test Reports: For each product that requires testing to be performed by manufacturer.

- D. Source quality-control reports.
- E. Field quality-control reports.
- F. Sample Warranty: For manufacturer's warranty.

1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For DDC system to include in emergency, operation and maintenance manuals.
 - 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 - a. Project Record Drawings of as-built versions of submittal Shop Drawings provided in electronic PDF format.
 - b. Testing and commissioning reports and checklists of completed final versions of reports, checklists, and trend logs.
 - c. As-built versions of submittal Product Data.
 - d. Names, addresses, e-mail addresses and 24-hour telephone numbers of Installer and service representatives for DDC system and products.
 - e. Operator's manual with procedures for operating control systems including logging on and off, handling alarms, producing point reports, trending data, overriding computer control and changing set points and variables.
 - f. Programming manuals with description of programming language and syntax, of statements for algorithms and calculations used, of point database creation and modification, of program creation and modification, and of editor use.
 - g. Engineering, installation, and maintenance manuals that explain how to:
 - 1) Design and install new points, panels, and other hardware.
 - 2) Perform preventive maintenance and calibration.
 - 3) Debug hardware problems.
 - 4) Repair or replace hardware.
 - h. Documentation of all programs created using custom programming language including set points, tuning parameters, and object database.
 - i. Backup copy of graphic files, programs, and database on electronic media such as DVDs.
 - j. List of recommended spare parts with part numbers and suppliers.
 - k. Complete original-issue documentation, installation, and maintenance information for furnished third-party hardware including computer equipment and sensors.
 - I. Complete original-issue copies of furnished software, including operating systems, custom programming language, operator workstation software, and graphics software.
 - m. Licenses, guarantees, and warranty documents.
 - n. Recommended preventive maintenance procedures for system components, including schedule of tasks such as inspection, cleaning, and calibration; time between tasks; and task descriptions.
 - o. Owner training materials.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials and parts that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
- B. Include product manufacturers' recommended parts lists for proper product operation over four-year period following warranty period. Parts list shall be indicated for each year.

1.8 QUALITY ASSURANCE

- A. DDC System Manufacturer Qualifications:
 - 1. Nationally recognized manufacturer of DDC systems and products.
 - 2. DDC systems with similar requirements to those indicated for a continuous period of five years within time of bid.
 - 3. DDC systems and products that have been successfully tested and in use on at least five past projects.
 - 4. Having complete published catalog literature, installation, operation and maintenance manuals for all products intended for use.
 - 5. Having full-time in-house employees for the following:
 - a. Product research and development.
 - b. Product and application engineering.
 - c. Product manufacturing, testing and quality control.
 - d. Technical support for DDC system installation training, commissioning and troubleshooting of installations.
 - e. Owner operator training.
- B. DDC System Provider Qualifications:
 - 1. Authorized representative of, and trained by, DDC system manufacturer.
 - 2. Demonstrated past experience with installation of DDC system products being installed for period within five consecutive years before time of bid.
 - 3. Demonstrated past experience on five projects of similar complexity, scope and value.
 - 4. Each person assigned to Project shall have demonstrated past experience.
 - 5. Staffing resources of competent and experienced full-time employees that are assigned to execute work according to schedule.
 - 6. Service and maintenance staff assigned to support Project during warranty period.
 - 7. Product parts inventory to support on-going DDC system operation for a period of not less than 5 years after Substantial Completion.
 - 8. DDC system manufacturer's backing to take over execution of Work if necessary to comply with requirements indicated. Include Project-specific written letter, signed by manufacturer's corporate officer, if requested.

1.9 WARRANTY

A. Manufacturer's Warranty: Manufacturer and Installer agree to repair or replace products that fail in materials or workmanship within specified warranty period.
- 1. Failures shall be adjusted, repaired, or replaced at no additional cost or reduction in service to Owner.
- 2. Include updates or upgrades to software and firmware if necessary to resolve deficiencies.
 - a. Install updates only after receiving Owner's written authorization.
- 3. Warranty service shall occur during normal business hours and commence within 24 hours of Owner's warranty service request.
- 4. Warranty Period: Two year(s) from date of Substantial Completion.
 - a. For Gateway: Two-year parts and labor warranty for each.

PART 2 - PRODUCTS

2.1 DDC SYSTEM MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Alerton Inc.
 - 2. Automated Logic Corporation.
 - 3. Delta Controls Inc.
 - 4. Distech Controls.
 - 5. Trane.

The above list does not indicate order of preference and does not guarantee acceptance of products or installation. Control systems shall comply with terms of this specification. Alternate manufacturers subject to the approval of Owner and Engineer.

2.2 DDC SYSTEM DESCRIPTION

- A. Microprocessor-based monitoring and control including analog/digital conversion and program logic. A control loop or subsystem in which digital and analog information is received and processed by a microprocessor, and digital control signals are generated based on control algorithms and transmitted to field devices to achieve a set of predefined conditions.
 - 1. DDC system shall consist of a peer-to-peer network of distributed DDC controllers, other network devices, operator interfaces, and software.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.3 WEB ACCESS

- A. DDC system shall be Web based or Web compatible.
 - 1. Web-Based Access to DDC System:

OMD: CAMP UMATILLA PAGE 13 ENLISTED BARRACKS EB3 SECTION 23 09 23 DIRECT DIGITAL CONTROL SYSTEM FOR HVAC

- a. DDC system software shall be based on server thin-client architecture, designed around open standards of Web technology. DDC system server shall be accessed using a Web browser over DDC system network, using Owner's LAN, and remotely over Internet through Owner's LAN.
- b. Intent of thin-client architecture is to provide operators complete access to DDC system via a Web browser. No special software other than a Web browser shall be required to access graphics, point displays, and trends; to configure trends, points, and controllers; and to edit programming.
- c. Web access shall be password protected.
- 2. Web-Compatible Access to DDC System:
 - a. Workstation and or server shall perform overall system supervision and configuration, graphical user interface, management report generation, and alarm annunciation.
 - b. DDC system shall support Web browser access to building data. Operator using a standard Web browser shall be able to access control graphics and change adjustable set points.
 - c. Web access shall be password protected.

2.4 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Engage a qualified professional to design DDC system to satisfy requirements indicated.
 - 1. System Performance Objectives:
 - a. DDC system shall manage HVAC systems.
 - DDC system control shall operate HVAC systems to achieve optimum operating costs while using least possible energy and maintaining specified performance.
 - c. DDC system shall respond to power failures, HVAC equipment failures, and adverse and emergency conditions encountered through connected I/O points.
 - d. DDC system shall operate while unattended by an operator and through operator interaction.
 - e. DDC system shall record trends and transaction of events and produce report information such as performance, energy, occupancies, and equipment operation.
- B. Surface-Burning Characteristics: Products installed in ducts, equipment, and return-air paths shall comply with ASTM E 84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 - 1. Flame-Spread Index: 25 or less.
 - 2. Smoke-Developed Index: 50 or less.
- C. DDC System Speed:
 - 1. Response Time of Connected I/O:

- a. Al point values connected to DDC system shall be updated at least every five seconds for use by DDC controllers. Points used globally shall also comply with this requirement.
- b. BI point values connected to DDC system shall be updated at least every five seconds for use by DDC controllers. Points used globally shall also comply with this requirement.
- c. AO points connected to DDC system shall begin to respond to controller output commands within two second(s). Global commands shall also comply with this requirement.
- d. BO point values connected to DDC system shall respond to controller output commands within two second(s). Global commands shall also comply with this requirement.
- 2. Display of Connected I/O:
 - a. Analog point COV connected to DDC system shall be updated and displayed at least every 10 seconds for use by operator.
 - b. Binary point COV connected to DDC system shall be updated and displayed at least every 10 seconds for use by operator.
 - c. Alarms of analog and digital points connected to DDC system shall be displayed within 30 seconds of activation or change of state.
 - d. Graphic display refresh shall update within eight seconds.
 - e. Point change of values and alarms displayed from workstation to workstation when multiple operators are viewing from multiple workstations shall not exceed graphic refresh rate indicated.
- D. Network Bandwidth: Design each network of DDC system to include at least 30 percent available spare bandwidth with DDC system operating under normal and heavy load conditions indicated. Calculate bandwidth usage, and apply a safety factor to ensure that requirement is satisfied when subjected to testing under worst case conditions.
- E. DDC System Data Storage:
 - 1. Include capability to archive not less than 48 consecutive months of historical data for all I/O points connected to system, including alarms, event histories, transaction logs, trends and other information indicated.
 - 2. Local Storage:
 - a. Provide server/workstation with data storage indicated. Server(s) shall use IT industry standard database platforms and be capable of functions described in "DDC Data Access" Paragraph.
 - 3. Cloud Storage:
 - a. Provide application-based and web browser interfaces to configure, upload, download, and manage data, and service plan with storage adequate to store all data for term indicated. Cloud storage shall use IT industry standard database platforms and be capable of functions described in "DDC Data Access" Paragraph.
- F. DDC Data Access:

- 1. When logged into the system, operator shall be able to also interact with any DDC controller connected to DDC system as required for functional operation of DDC system.
- 2. System(s) shall be used for application configuration; for archiving, reporting and trending of data; for operator transaction archiving and reporting; for network information management; for alarm annunciation; and for operator interface tasks and controls application management.
- G. Future Expandability:
 - 1. DDC system size shall be expandable to an ultimate capacity of at least **two** times total I/O points indicated.
 - 2. Additional DDC controllers, I/O and associated wiring shall be all that is needed to achieve ultimate capacity. Initial network infrastructure shall be designed and installed to support ultimate capacity.
 - 3. Operator interfaces installed initially shall not require hardware and software additions and revisions for ultimate capacity.
- H. Input Point Displayed Accuracy: Input point displayed values shall meet following endto-end overall system accuracy, including errors associated with meter, sensor, transmitter, lead wire or cable, and analog to digital conversion.
 - 1. Energy:
 - a. Thermal: Within 3 percent of reading.
 - b. Electric Power: Within 1 percent of reading.
 - c. Requirements indicated on Drawings for meters not supplied by utility.
 - 2. Flow:
 - a. Air: Within 5 percent of design flow rate.
 - b. Air (Terminal Units): Within 5 percent of design flow rate.
 - c. Water: Within 2 percent of design flow rate.
 - 3. Gas:
 - a. Carbon Dioxide: Within 50 ppm.
 - 4. Moisture (Relative Humidity):
 - a. Air: Within 5 percent RH.
 - 5. Pressure:
 - a. Air, Ducts and Equipment: 1 percent of instrument range.
 - b. Space: Within 1 percent of instrument range.
 - c. Water: Within 1 percent of instrument range.
 - 6. Speed: Within 10 percent of reading.
 - 7. Temperature, Dew Point:
 - a. Air: Within 1 deg F.
 - 8. Temperature, Dry Bulb:

- a. Air: Within 0.5 deg F.
- b. Space: Within 0.5 deg F.
- c. Outdoor: Within 1 deg F.
- d. Condenser Water: Within 0.5 deg F.
- e. Heating Hot Water: Within 0.5 deg F.
- f. Temperature Difference: Within 0.25 deg F.
- 9. Temperature, Wet Bulb:
 - a. Air: Within 1 deg F.
- 10. Vibration: Within 5 percent of reading.
- I. Precision of I/O Reported Values: Values reported in database and displayed shall have following precision:
 - 1. Current:
 - a. Milliamperes: Nearest 1/100th of a milliampere.
 - b. Amperes: Nearest 1/10th of an ampere up to 100 A; nearest ampere for 100 A and more.
 - 2. Energy:
 - a. Electric Power:
 - 1) Rate (Watts): Nearest 1/10th of a watt through 1000 W.
 - 2) Rate (Kilowatts): Nearest 1/10th of a kilowatt through 1000 kW; nearest kilowatt above 1000 kW.
 - Usage (Kilowatt-Hours): Nearest kilowatt through 10,000 kW; nearest 10 kW between 10,000 and 100,000 kW; nearest 100 kW for above 100,000 kW.
 - b. Thermal, Rate:
 - 1) Heating: For Btu/h, nearest Btu/h up to 1000 Btu/h; nearest 10 Btu/h between 1000 and 10,000 Btu/h; nearest 100 Btu/h for above 10,000 Btu/h. For Mbh, round to nearest Mbh up to 1000 Mbh; nearest 10 Mbh between 1000 and 10,000 Mbh; nearest 100 Mbh above 10,000 Mbh.
 - 2) Cooling: For tons, nearest ton up to 1000 tons; nearest 10 tons between 1000 and 10,000 tons; nearest 100 tons above 10,000 tons.
 - c. Thermal, Usage:
 - Heating: For Btu, nearest Btu up to 1000 Btu; nearest 10 Btu between 1000 and 10,000 Btu; nearest 100 Btu for above 10,000 Btu. For Mbtu, round to nearest Mbtu up to 1000 Mbtu; nearest 10 Mbtu between 1000 and 10,000 Mbtu; nearest 100 Mbtu above 10,000 Mbtu.
 - 2) Cooling: For ton-hours, nearest ton-hours up to 1000 ton-hours; nearest 10 ton-hours between 1000 and 10,000 ton-hours; nearest 100 tons above 10,000 tons.

- 3. Flow:
 - a. Air: Nearest 1/10th of a cfm through 100 cfm; nearest cfm between 100 and 1000 cfm; nearest 10 cfm between 1000 and 10,000 cfm; nearest 100 cfm above 10,000 cfm.
 - b. Water: Nearest 1/10th gpm through 100 gpm; nearest gpm between 100 and 1000 gpm; nearest 10 gpm between 1000 and 10,000 gpm; nearest 100 gpm above 10,000 gpm.
- 4. Gas:
 - a. Carbon Dioxide (ppm): Nearest ppm.
- 5. Moisture (Relative Humidity):
 - a. Relative Humidity (Percentage): Nearest 1 percent.
- 6. Level: Nearest 1/100th of an inch through 10 inches; nearest 1/10 of an inch between 10 and 100 inches; nearest inch above 100 inches.
- 7. Speed:
 - a. Rotation (rpm): Nearest 1 rpm.
 - b. Velocity: Nearest 1/10th fpm through 100 fpm; nearest fpm between 100 and 1000 fpm; nearest 10 fpm above 1000 fpm.
- 8. Position, Dampers and Valves (Percentage Open): Nearest 1 percent.
- 9. Pressure:
 - a. Air, Ducts and Equipment: Nearest 1/10th in. w.c..
 - b. Space: Nearest 1/100th in. w.c..
 - c. Steam: Nearest 1/10th psig through 100 psig; nearest psig above 100 psig.
 - d. Water: Nearest 1/10 psig through 100 psig; nearest psig above 100 psig.
- 10. Temperature:
 - a. Air, Ducts and Equipment: Nearest 1/10th of a degree.
 - b. Outdoor: Nearest degree.
 - c. Space: Nearest 1/10th of a degree.
 - d. Chilled Water: Nearest 1/10th of a degree.
 - e. Condenser Water: Nearest 1/10th of a degree.
 - f. Heating Hot Water: Nearest degree.
 - g. Heat Recovery Runaround: Nearest 1/10th of a degree.
 - h. Steam: Nearest degree.
- 11. Vibration: Nearest 1/10th in/s.
- 12. Voltage: Nearest 1/10 volt up to 100 V; nearest volt above 100 V.
- J. Control Stability: Control variables indicated within the following limits:
 - 1. Flow:
 - a. Air, Ducts and Equipment, except Terminal Units: Within 5 percent of design flow rate.
 - b. Water: Within 2 percent of design flow rate.

- 2. Gas:
 - a. Carbon Dioxide: Within 50 ppm.
- 3. Moisture (Relative Humidity):
 - a. Air: Within 5 percent RH.
- 4. Pressure:
 - a. Air, Ducts and Equipment: 1 percent of instrument range.
 - b. Water: Within 1 percent of instrument range.
- 5. Temperature, Dew Point:
 - a. Air: Within 1 deg F.
- 6. Temperature, Dry Bulb:
 - a. Air: Within 0.5 deg F.
 - b. Space: Within 0.5 deg F.
 - c. Outdoor: Within 1 deg F.
 - d. Condenser Water: Within 0.5 deg F.
 - e. Heating Hot Water: Within 0.5 deg F.
 - f. Temperature Difference: Within 0.25 deg F.
- 7. Temperature, Wet Bulb:
 - a. Air: Within 1 deg F.
- K. Environmental Conditions for Controllers, Gateways, and Routers:
 - 1. Products shall operate without performance degradation under ambient environmental temperature, pressure and humidity conditions encountered for installed location.
 - a. If product alone cannot comply with requirement, install product in a protective enclosure that is isolated and protected from conditions impacting performance. Enclosure shall be internally insulated, electrically heated, cooled and ventilated as required by product and application.
 - 2. Products shall be protected with enclosures satisfying the following minimum requirements unless more stringent requirements are indicated. Products not available with integral enclosures complying with requirements indicated shall be housed in protective secondary enclosures. Installed location shall dictate the following NEMA 250 enclosure requirements:
 - a. Outdoors, Unprotected: Type 4.
 - b. Indoors, Heated and Air Conditioned: Type 1.
 - c. Mechanical Equipment Rooms:Type 12 or Type 4.
- L. Continuity of Operation after Electric Power Interruption:

OMD: CAMP UMATILLA PAGE 19 ENLISTED BARRACKS EB3 SECTION 23 09 23 DIRECT DIGITAL CONTROL SYSTEM FOR HVAC

1. Equipment and associated factory-installed controls, field-installed controls, electrical equipment, and power supply connected to building normal and backup power systems shall automatically return equipment and associated controls to operating state occurring immediately before loss of normal power, without need for manual intervention by operator when power is restored either through backup power source or through normal power if restored before backup power is brought online.

2.5 SYSTEM ARCHITECTURE

- A. System architecture shall consist of no more than three levels of LANs.
 - 1. Level one LAN shall connect network controllers and operator workstations.
 - 2. Level one or Level two LAN shall connect programmable application controllers to other programmable application controllers, and to network controllers.
 - 3. Level two or Level three LAN shall connect application-specific controllers to programmable application controllers and network controllers.
 - 4. Level two or Level three LAN shall connect application-specific controllers to application-specific controllers.
- B. DDC system shall consist of dedicated LANs that are not shared with other building systems and tenant data and communication networks.
- C. System architecture shall be modular and have inherent ability to expand to not less than two times system size indicated with no impact to performance indicated.
- D. System architecture shall perform modifications without having to remove and replace existing network equipment.
- E. Number of LANs and associated communication shall be transparent to operator. All I/O points residing on any LAN shall be capable of global sharing between all system LANs.
- F. System design shall eliminate dependence on any single device for system alarm reporting and control execution. Each controller shall operate independently by performing its' own control, alarm management and historical data collection.
- G. Special Network Architecture Requirements:
 - Air-Handling Systems: For control applications of an air-handling system that consists of air-handling unit(s) and VAV terminal units, include a dedicated LAN of application-specific controllers serving VAV terminal units connected directly to controller that is controlling air-handling system air-handling unit(s). Basically, create a DDC system LAN that aligns with air-handling system being controlled.

2.6 DDC SYSTEM OPERATOR INTERFACES

- A. Operator Means of System Access: Operator shall be able to access entire DDC system through any of multiple means, including, but not limited to, the following:
 - 1. Desktop and portable workstation with hardwired connection through LAN port.
 - 2. Portable operator terminal with hardwired connection through LAN port.

- 3. Portable operator workstation with wireless connection through LAN router.
- 4. Mobile device and application with secured wireless connection through LAN router or cellular data service.
- 5. Remote connection through web access.
- B. Access to system, regardless of operator means used, shall be transparent to operator.
- C. Network Ports: For hardwired connection of desktop or portable workstation. Network port shall be easily accessible, properly protected, clearly labeled, and installed at the following locations:
 - 1. Each mechanical equipment room.
 - 2. Each boiler room.
 - 3. Each chiller room or outdoor chiller yard.
 - 4. Each cooling tower location.
- D. Portable Workstations:
 - 1. Connect to DDC system Level one LAN through a communications port directly on LAN or through a communications port on a DDC controller.
 - 2. Able to communicate with any device located on any DDC system LAN.
 - 3. Connect to DDC system Level two or Level three LAN through a communications port on an application-specific controller, or a room temperature sensor connected to an application-specific controller.
 - 4. Connect to system through a wireless router connected to Level one LAN.
 - 5. Connect to system through a cellular data service.
 - 6. Portable workstation shall be able to communicate with any device connected to any system LAN regardless of point of physical connection to system.
 - 7. Monitor, program, schedule, adjust set points, and report capabilities of I/O connected anywhere in system.
 - 8. Have dynamic graphic displays that are identical to desktop workstations.
- E. POT:
 - 1. Connect DDC controller through a communications port local to controller.
 - 2. Able to communicate with any DDC system controller that is directly connected or with LAN or connected to DDC system.
- F. Mobile Device:
 - 1. Connect to system through a wireless router connected to LAN.
 - 2. Able to communicate with any DDC controller connected to DDC system using **a** dedicated application and secure web access.
- G. Critical Alarm Reporting:
 - 1. Operator-selected critical alarms shall be sent by DDC system to notify operator of critical alarms that require immediate attention.
 - 2. DDC system shall send alarm notification to multiple recipients that are assigned for each alarm.
 - 3. DDC system shall notify recipients by any or all means, including e-mail, text message and prerecorded phone message to mobile and landline phone numbers.

H. Simultaneous Operator Use: Capable of accommodating up to five 10 20 Insert number simultaneous operators that are accessing DDC system through any one of operator interfaces indicated.

2.7 NETWORK COMMUNICATION PROTOCOL

- A. Network communication protocol(s) used throughout entire DDC system shall be open to Owner and available to other companies for use in making future modifications to DDC system.
- B. ASHRAE 135 Protocol:
 - 1. ASHRAE 135 communication protocol shall be sole and native protocol used throughout entire DDC system.
 - 2. DDC system shall not require use of gateways except to integrate HVAC equipment and other building systems and equipment, not required to use ASHRAE 135 communication protocol.
 - 3. If used, gateways shall connect to DDC system using ASHRAE 135 communication protocol and Project object properties and read/write services indicated by interoperability schedule.
 - 4. Operator workstations, controllers and other network devices shall be tested and listed by BACnet Testing Laboratories.

2.8 PORTABLE OPERATOR TERMINAL

- A. Description: Handheld device with integral keypad or touch screen operator interface.
- B. Display: Multiple lines of text display for use in operator interaction with DDC system.
- C. Cable: Flexible cable, at least 36 inches long, with a plug-in jack for connection to DDC controllers, network ports or instruments with an integral LAN port. As an alternative to hardwired connection, POT shall be accessible to DDC controllers through a wireless network connection.
- D. POT shall be powered through network connection.
- E. Connection of POT to DDC system shall not interrupt or interfere with normal network operation in any way, prevent alarms from being transmitted, or preclude central initiated commands and system modification.
- F. POT shall give operator the ability to do the following:
 - 1. Display and monitor BI point status.
 - 2. Change BO point set point (on or off, open or closed).
 - 3. Display and monitor analog point values.
 - 4. Change analog control set points.
 - 5. Command a setting of AO point.
 - 6. Display and monitor I/O point in alarm.
 - 7. Add a new or delete an existing I/O point.
 - 8. Enable and disable I/O points, initiators, and programs.
 - 9. Display and change time and date.
 - 10. Display and change time schedules.

OMD: CAMP UMATILLA PAGE 22 ENLISTED BARRACKS EB3 SECTION 23 09 23 DIRECT DIGITAL CONTROL SYSTEM FOR HVAC

- 11. Display and change run-time counters and run-time limits.
- 12. Display and change time and event initiation.
- 13. Display and change control application and DDC parameters.
- 14. Display and change programmable offset values.
- 15. Access DDC controller initialization routines and diagnostics.

2.9 SYSTEM SOFTWARE

- A. System Software Minimum Requirements:
 - 1. Real-time multitasking and multiuser 64-bit operating system that allows concurrent multiple operator workstations operating and concurrent execution of multiple real-time programs and custom program development.
 - 2. Operating system shall be capable of operating DOS and Microsoft Windows applications.
 - 3. Database management software shall manage all data on an integrated and nonredundant basis. Additions and deletions to database shall be without detriment to existing data. Include cross linkages so no data required by a program can be deleted by an operator until that data have been deleted from respective programs.
 - 4. Network communications software shall manage and control multiple network communications to provide exchange of global information and execution of global programs.
 - 5. Operator interface software shall include day-to-day operator transaction processing, alarm and report handling, operator privilege level and data segregation control, custom programming, and online data modification capability.
 - 6. Scheduling software shall schedule centrally based time and event, temporary, and exception day programs.
- B. Operator Interface Software:
 - 1. Minimize operator training through use of English language prorating and English language point identification.
 - 2. Minimize use of a typewriter-style keyboard through use of a pointing device similar to a mouse.
 - 3. Operator sign-off shall be a manual operation or, if no keyboard or mouse activity takes place, an automatic sign-off.
 - 4. Automatic sign-off period shall be programmable from one to 60 minutes in oneminute increments on a per operator basis.
 - 5. Operator sign-on and sign-off activity shall be recorded and sent to printer.
 - 6. Security Access:
 - a. Operator access to DDC system shall be under password control.
 - b. An alphanumeric password shall be field assignable to each operator.
 - c. Operators shall be able to access DDC system by entry of proper password.
 - d. Operator password shall be same regardless of which computer or other interface means is used.
 - e. Additions or changes made to passwords shall be updated automatically.
 - f. Each operator shall be assigned an access level to restrict access to data and functions the operator is cable of performing.
 - g. Software shall have at least five access levels.

- h. Each menu item shall be assigned an access level so that a one-for-one correspondence between operator assigned access level(s) and menu item access level(s) is required to gain access to menu item.
- i. Display menu items to operator with those capable of access highlighted. Menu and operator access level assignments shall be online programmable and under password control.
- 7. Data Segregation:
 - a. Include data segregation for control of specific data routed to a workstation, to an operator or to a specific output device, such as a printer.
 - b. Include at least 32 segregation groups.
 - c. Segregation groups shall be selectable such as "fire points," "fire points on second floor," "space temperature points," "HVAC points," and so on.
 - d. Points shall be assignable to multiple segregation groups. Display and output of data to printer or monitor shall occur where there is a match of operator or peripheral segregation group assignment and point segregations.
 - e. Alarms shall be displayed and printed at each peripheral to which segregation allows, but only those operators assigned to peripheral and having proper authorization level will be allowed to acknowledge alarms.
 - f. Operators and peripherals shall be assignable to multiple segregation groups and all assignments are to be online programmable and under password control.
- 8. Operators shall be able to perform commands including, but not limited to, the following:
 - a. Start or stop selected equipment.
 - b. Adjust set points.
 - c. Add, modify, and delete time programming.
 - d. Enable and disable process execution.
 - e. Lock and unlock alarm reporting for each point.
 - f. Enable and disable totalization for each point.
 - g. Enable and disable trending for each point.
 - h. Override control loop set points.
 - i. Enter temporary override schedules.
 - j. Define holiday schedules.
 - k. Change time and date.
 - I. Enter and modify analog alarm limits.
 - m. Enter and modify analog warning limits.
 - n. View limits.
 - o. Enable and disable demand limiting.
 - p. Enable and disable duty cycle.
 - q. Display logic programming for each control sequence.
- 9. Reporting:
 - a. Generated automatically and manually.
 - b. Sent to displays, printers and disk files.
 - c. Types of Reporting:
 - 1) General listing of points.
 - 2) List points currently in alarm.
 - 3) List of off-line points.

- 4) List points currently in override status.
- 5) List of disabled points.
- 6) List points currently locked out.
- 7) List of items defined in a "Follow-Up" file.
- 8) List weekly schedules.
- 9) List holiday programming.
- 10) List of limits and deadbands.
- 10. Summaries: For specific points, for a logical point group, for an operator selected group(s), or for entire system without restriction due to hardware configuration.
- C. Graphic Interface Software:
 - 1. Include a full interactive graphical selection means of accessing and displaying system data to operator. Include at least five levels with the penetration path operator assignable (for example, site, building, floor, air-handling unit, and supply temperature loop). Native language descriptors assigned to menu items are to be operator defined and modifiable under password control.
 - 2. Include a hierarchical-linked dynamic graphic operator interface for accessing and displaying system data and commanding and modifying equipment operation. Interface shall use a pointing device with pull-down or penetrating menus, color and animation to facilitate operator understanding of system.
 - 3. Include at least 10 levels of graphic penetration with the hierarchy operator assignable.
 - 4. Descriptors for graphics, points, alarms and such shall be modified through operator's workstation under password control.
 - 5. Graphic displays shall be online user definable and modifiable using the hardware and software provided.
 - 6. Data to be displayed within a graphic shall be assignable regardless of physical hardware address, communication or point type.
 - 7. Graphics are to be online programmable and under password control.
 - 8. Points may be assignable to multiple graphics where necessary to facilitate operator understanding of system operation.
 - 9. Graphics shall also contain software points.
 - 10. Penetration within a graphic hierarchy shall display each graphic name as graphics are selected to facilitate operator understanding.
 - 11. Back-trace feature shall permit operator to move upward in the hierarchy using a pointing device. Back trace shall show all previous penetration levels. Include operator with option of showing each graphic full screen size with back trace as horizontal header or by showing a "stack" of graphics, each with a back trace.
 - 12. Display operator accessed data on the monitor.
 - 13. Operator shall select further penetration using pointing device to click on a site, building, floor, area, equipment, and so on. Defined and linked graphic below that selection shall then be displayed.
 - 14. Include operator with means to directly access graphics without going through penetration path.
 - 15. Dynamic data shall be assignable to graphics.
 - 16. Display points (physical and software) with dynamic data provided by DDC system with appropriate text descriptors, status or value, and engineering unit.
 - 17. Use color, rotation, or other highly visible means, to denote status and alarm states. Color shall be variable for each class of points, as chosen by operator.
 - 18. Points shall be dynamic with operator adjustable update rates on a per point basis from one second to over a minute.
 - 19. For operators with appropriate privilege, points shall be commanded directly from display using pointing device.

- a. For an analog command point such as set point, current conditions and limits shall be displayed and operator can position new set point using pointing device.
- b. For a digital command point such as valve position, valve shall show its current state such as open or closed and operator could select alternative position using pointing device.
- c. Keyboard equivalent shall be available for those operators with that preference.
- 20. Operator shall be able to split or resize viewing screen into quadrants to show one graphic on one quadrant of screen and other graphics or spreadsheet, bar chart, word processing, curve plot and other information on other quadrants on screen. This feature shall allow real-time monitoring of one part of system while displaying other parts of system or data to better facilitate overall system operation.
- 21. Help Features:
 - a. On-line context-sensitive help utility to facilitate operator training and understanding.
 - b. Bridge to further explanation of selected keywords. Document shall contain text and graphics to clarify system operation.
 - 1) If help feature does not have ability to bridge on keywords for more information, a complete set of user manuals shall be provided in an indexed word-processing program, which shall run concurrently with operating system software.
 - c. Available for Every Menu Item:
 - 1) Index items for each system menu item.
- 22. Graphic generation software shall allow operator to add, modify, or delete system graphic displays.
 - a. Include libraries of symbols depicting HVAC symbols such as fans, coils, filters, dampers, valves pumps, and electrical symbols similar to those indicated.
 - b. Graphic development package shall use a pointing device in conjunction with a drawing program to allow operator to perform the following:
 - 1) Define background screens.
 - 2) Define connecting lines and curves.
 - 3) Locate, orient and size descriptive text.
 - 4) Define and display colors for all elements.
 - 5) Establish correlation between symbols or text and associated system points or other displays.
- D. Project-Specific Graphics: Graphics documentation including, but not limited to, the following:
 - 1. Plan for each building floor, including interstitial floors, and each roof level of each building, showing the following:
 - a. Room layouts with room identification and name.

- b. Locations and identification of all monitored and controlled HVAC equipment and other equipment being monitored and controlled by DDC system.
- c. Location and identification of each hardware point being controlled or monitored by DDC system.
- 2. Control schematic for each of following, including a graphic system schematic representation, similar to that indicated on Drawings, with point identification, set point and dynamic value indication, sequence of operation and control logic diagram.
- 3. Graphic display for each piece of equipment connected to DDC system through a data communications link. Include dynamic indication of all points associated with equipment.
- 4. DDC system network riser diagram that shows schematic layout for entire system including all networks and all controllers, gateways and other network devices.
- E. Customizing Software:
 - 1. Software to modify and tailor DDC system to specific and unique requirements of equipment installed, to programs implemented and to staffing and operational practices planned.
 - 2. Online modification of DDC system configuration, program parameters, and database using menu selection and keyboard entry of data into preformatted display templates.
 - 3. As a minimum, include the following modification capability:
 - a. Operator assignment shall include designation of operator passwords, access levels, point segregation and auto sign-off.
 - b. Peripheral assignment capability shall include assignment of segregation groups and operators to consoles and printers, designation of backup workstations and printers, designation of workstation header points and enabling and disabling of print-out of operator changes.
 - c. System configuration and diagnostic capability shall include communications and peripheral port assignments, DDC controller assignments to network, DDC controller enable and disable, assignment of command trace to points and application programs and initiation of diagnostics.
 - d. System text addition and change capability shall include English or native language descriptors for points, segregation groups and access levels and action messages for alarms, run time and trouble condition.
 - e. Time and schedule change capability shall include time and date set, time and occupancy schedules, exception and holiday schedules and daylight savings time schedules.
 - f. Point related change capability shall include the following:
 - 1) System and point enable and disable.
 - 2) Run-time enable and disable.
 - 3) Assignment of points to segregation groups, calibration tables,
 - lockout, and run time and to a fixed I/O value.
 - 4) Assignment of alarm and warning limits.
 - g. Application program change capability shall include the following:
 - 1) Enable and disable of software programs.
 - 2) Programming changes.

- 3) Assignment of comfort limits, global points, time and event initiators, time and event schedules and enable and disable time and event programs.
- 4. Software shall allow operator to add points, or groups of points, to DDC system and to link them to energy optimization and management programs. Additions and modifications shall be online programmable using operator workstation, downloaded to other network devices and entered into their databases. After verification of point additions and associated program operation, database shall be uploaded and recorded on hard drive and disk for archived record.
- 5. Include high-level language programming software capability for implementation of custom DDC programs. Software shall include a compiler, linker, and up- and down-load capability.
- 6. Include a library of DDC algorithms, intrinsic control operators, arithmetic, logic and relational operators for implementation of control sequences. Also include, as a minimum, the following:
 - a. Proportional control (P).
 - b. Proportional plus integral (PI).
 - c. Proportional plus integral plus derivative (PID).
 - d. Adaptive and intelligent self-learning control.
 - 1) Algorithm shall monitor loop response to output corrections and adjust loop response characteristics according to time constant changes imposed.
 - Algorithm shall operate in a continuous self-learning manner and shall retain in memory a stored record of system dynamics so that on system shut down and restart, learning process starts from where it left off.
- 7. Fully implemented intrinsic control operators including sequence, reversing, ratio, time delay, time of day, highest select AO, lowest select AO, analog controlled digital output, analog control AO, and digitally controlled AO.
- 8. Logic operators such as "And," "Or," "Not," and others that are part of a standard set available with a high-level language.
- 9. Arithmetic operators such as "Add," "Subtract," "Multiply," "Divide," and others that are part of a standard set available with a high-level language.
- 10. Relational operators such as "Equal To," "Not Equal To," "Less Than," "Greater Than," and others that are part of a standard set available with a high-level language.
- F. Alarm Handling Software:
 - 1. Include alarm handling software to report all alarm conditions monitored and transmitted through DDC controllers, gateways and other network devices.
 - 2. Include first in, first out handling of alarms according to alarm priority ranking, with most critical alarms first, and with buffer storage in case of simultaneous and multiple alarms.
 - 3. Alarm handling shall be active at all times to ensure that alarms are processed even if an operator is not currently signed on to DDC system.
 - 4. Alarms display shall include the following:
 - a. Indication of alarm condition such as "Abnormal Off," "Hi Alarm," and "Low Alarm."

- "Analog Value" or "Status" group and point identification with native language point descriptor such as "Space Temperature, Building 110, 2nd Floor, Room 212."
- c. Discrete per point alarm action message, such as "Call Maintenance Dept. Ext-5561."
- d. Include extended message capability to allow assignment and printing of extended action messages. Capability shall be operator programmable and assignable on a per point basis.
- 5. Alarms shall be directed to appropriate operator workstations, printers, and individual operators by privilege level and segregation assignments.
- 6. Send e-mail alarm messages to designated operators.
- 7. Send e-mail, page, text and voice messages to designated operators for critical alarms.
- 8. Alarms shall be categorized and processed by class.
 - a. Class 1:
 - 1) Associated with fire, security and other extremely critical equipment monitoring functions; have alarm, trouble, return to normal, and acknowledge conditions printed and displayed.
 - 2) Unacknowledged alarms to be placed in unacknowledged alarm buffer.
 - 3) All conditions shall cause an audible sound and shall require individual acknowledgment to silence audible sound.
 - b. Class 2:
 - 1) Critical, but not life-safety related, and processed same as Class 1 alarms, except do not require individual acknowledgment.
 - 2) Acknowledgement may be through a multiple alarm acknowledgment.
 - c. Class 3:
 - 1) General alarms; printed, displayed and placed in unacknowledged alarm buffer queues.
 - Each new alarm received shall cause an audible sound. Audible sound shall be silenced by "acknowledging" alarm or by pressing a "silence" key.
 - 3) Acknowledgement of queued alarms shall be either on an individual basis or through a multiple alarm acknowledgement.
 - 4) Alarms returning to normal condition shall be printed and not cause an audible sound or require acknowledgment.
 - d. Class 4:
 - 1) Routine maintenance or other types of warning alarms.
 - 2) Alarms to be printed only, with no display, no audible sound and no acknowledgment required.

- 9. Include an unacknowledged alarm indicator on display to alert operator that there are unacknowledged alarms in system. Operator shall be able to acknowledge alarms on an individual basis or through a multiple alarm acknowledge key, depending on alarm class.
- 10. To ensure that no alarm records are lost, it shall be possible to assign a backup printer to accept alarms in case of failure of primary printer.
- G. Reports and Logs:
 - 1. Include reporting software package that allows operator to select, modify, or create reports using DDC system I/O point data available.
 - 2. Each report shall be definable as to data content, format, interval and date.
 - 3. Report data shall be sampled and stored on DDC controller, within storage limits of DDC controller, and then uploaded to archive on workstation for historical reporting.
 - 4. Operator shall be able to obtain real-time logs of all I/O points by type or status, such as alarm, point lockout, or normal.
 - 5. Reports and logs shall be stored on workstation hard drives in a format that is readily accessible by other standard software applications, including spreadsheets and word processing.
 - 6. Reports and logs shall be readily printed and set to be printed either on operator command or at a specific time each day.
- H. Standard Reports: Standard DDC system reports shall be provided and operator shall be able to customize reports later.
 - 1. All I/O: With current status and values.
 - 2. Alarm: All current alarms, except those in alarm lockout.
 - 3. Disabled I/O: All I/O points that are disabled.
 - 4. Alarm Lockout I/O: All I/O points in alarm lockout, whether manual or automatic.
 - 5. Alarm Lockout I/O in Alarm: All I/O in alarm lockout that are currently in alarm.
 - 6. Logs:
 - a. Alarm history.
 - b. System messages.
 - c. System events.
 - d. Trends.
- I. Custom Reports: Operator shall be able to easily define any system data into a daily, weekly, monthly, or annual report. Reports shall be time and date stamped and shall contain a report title.
- J. Standard Trends:
 - 1. Trend all I/O point present values, set points, and other parameters indicated for trending.
 - 2. Trends shall be associated into groups, and a trend report shall be set up for each group.
 - 3. Trends shall be stored within DDC controller and uploaded to hard drives automatically on reaching 75 of DDC controller buffer limit, or by operator request, or by archiving time schedule.
 - 4. Preset trend intervals for each I/O point after review with Owner.
 - 5. Trend intervals shall be operator selectable from 10 seconds up to 60 minutes. Minimum number of consecutive trend values stored at one time shall be 100 per variable.

- 6. When drive storage memory is full, most recent data shall overwrite oldest data.
- 7. Archived and real-time trend data shall be available for viewing numerically and graphically by operators.
- K. Custom Trends: Operator shall be able to define a custom trend log for any I/O point in DDC system.
 - 1. Each trend shall include interval, start time, and stop time.
 - 2. Data shall be sampled and stored on DDC controller, within storage limits of DDC controller, and then uploaded to archive on workstation hard drives.
 - 3. Data shall be retrievable for use in spreadsheets and standard database programs.
- L. Programming Software:
 - 1. Include programming software to execute sequences of operation indicated.
 - Include programming routines in simple and easy to follow logic with detailed text comments describing what the logic does and how it corresponds to sequence of operation.
 - 3. Programming software shall be one of the following:
 - a. Graphic Based: Programming shall use a library of function blocks made from preprogrammed code designed for DDC control systems.
 - 1) Function blocks shall be assembled with interconnection lines that represent to control sequence in a flowchart.
 - 2) Programming tools shall be viewable in real time to show present values and logical results of each function block.
 - b. Menu Based: Programming shall be done by entering parameters, definitions, conditions, requirements and constraints.
 - c. Line by Line and Text Based: Programming shall declare variable types such as local, global, real, integer, and so on, at the beginning of the program. Use descriptive comments frequently to describe programming code.
 - 4. Include means for detecting programming errors and testing software control strategies with a simulation tool before implementing in actual control. Simulation tool may be inherent with programming software or as a separate product.

2.10 DDC CONTROLLERS

- A. DDC system shall consist of a combination of network controllers, programmable application controllers and application-specific controllers to satisfy performance requirements indicated.
- B. DDC controllers shall perform monitoring, control, energy optimization and other requirements indicated.
- C. DDC controllers shall use a multitasking, multiuser, real-time digital control microprocessor with a distributed network database and intelligence.

- D. Each DDC controller shall be capable of full and complete operation as a completely independent unit and as a part of a DDC system wide distributed network.
- E. Environment Requirements:
 - 1. Controller hardware shall be suitable for the anticipated ambient conditions.
 - 2. Controllers located in conditioned space shall be rated for operation at 32 to 120 deg F.
 - 3. Controllers located outdoors shall be rated for operation at 40 to 150 deg F.
- F. Power and Noise Immunity:
 - 1. Controller shall operate at 90 to 110 percent of nominal voltage rating and shall perform an orderly shutdown below 80 percent of nominal voltage.
 - 2. Operation shall be protected against electrical noise of 5 to 120 Hz and from keyed radios with up to 5 W of power located within 36 inches of enclosure.
- G. Maintenance and Support: Include the following features to facilitate maintenance and support:
 - 1. Mount microprocessor components on circuit cards for ease of removal and replacement.
 - 2. Means to quickly and easily disconnect controller from network.
 - 3. Means to quickly and easily access connect to field test equipment.
 - 4. Visual indication that controller electric power is on, of communication fault or trouble, and that controller is receiving and sending signals to network.
- H. Input and Output Point Interface:
 - 1. Hardwired input and output points shall connect to network, programmable application and application-specific controllers.
 - 2. Input and output points shall be protected so shorting of point to itself, to another point, or to ground will not damage controller.
 - 3. Input and output points shall be protected from voltage up to 24 V of any duration so that contact will not damage controller.
 - 4. Als:
 - a. Als shall include monitoring of low-voltage (zero- to 10-V dc), current (4 to 20 mA) and resistance signals from thermistor and RTD sensors.
 - b. Als shall be compatible with, and field configurable to, sensor and transmitters installed.
 - c. Controller Als shall perform analog-to-digital (A-to-D) conversion with a minimum resolution of 8 bits or better to comply with accuracy requirements indicated.
 - d. Signal conditioning including transient rejection shall be provided for each AI.
 - e. Capable of being individually calibrated for zero and span.
 - f. Incorporate common-mode noise rejection of at least 50 dB from zero to 100 Hz for differential inputs, and normal-mode noise rejection of at least 20 dB at 60 Hz from a source impedance of 10000 ohms.
 - 5. AOs:

- a. Controller AOs shall perform analog-to-digital (A-to-D) conversion with a minimum resolution of 8 bits or better to comply with accuracy requirements indicated.
- b. Output signals shall have a range of 4 to 20 mA dc or zero- to 10-V dc as required to include proper control of output device.
- c. Capable of being individually calibrated for zero and span.
- d. AOs shall not exhibit a drift of greater than 0.4 percent of range per year.
- 6. Bls:
 - a. Controller BIs shall accept contact closures and shall ignore transients of less than 5-ms duration.
 - b. Isolation and protection against an applied steady-state voltage of up to 180-V ac peak.
 - c. Bls shall include a wetting current of at least 12 mA to be compatible with commonly available control devices and shall be protected against effects of contact bounce and noise.
 - d. Bls shall sense "dry contact" closure without external power (other than that provided by the controller) being applied.
 - e. Pulse accumulation input points shall comply with all requirements of BIs and accept up to 10 pulses per second for pulse accumulation. Buffer shall be provided to totalize pulses. Pulse accumulator shall accept rates of at least 20 pulses per second. The totalized value shall be reset to zero on operator's command.
- 7. BOs:
 - a. Controller BOs shall include relay contact closures or triac outputs for momentary and maintained operation of output devices.
 - Relay contact closures shall have a minimum duration of 0.1 second. Relays shall include at least 180 V of isolation. Electromagnetic interference suppression shall be provided on all output lines to limit transients to non-damaging levels. Minimum contact rating shall be 1 A at 24-V ac.
 - 2) Triac outputs shall include at least 180 V of isolation. Minimum contact rating shall be 1 A at 24-V ac.
 - b. BOs shall include for two-state operation or a pulsed low-voltage signal for pulse-width modulation control.
 - c. BOs shall be selectable for either normally open or normally closed operation.
 - d. Include tristate outputs (two coordinated BOs) for control of three-point floating-type electronic actuators without feedback.

2.11 NETWORK CONTROLLERS

- A. General Network Controller Requirements:
 - 1. Include adequate number of controllers to achieve performance indicated.
 - 2. System shall consist of one or more independent, standalone, microprocessorbased network controllers to manage global strategies indicated.

- 3. Controller shall have enough memory to support its operating system, database, and programming requirements.
- 4. Data shall be shared between networked controllers and other network devices.
- 5. Operating system of controller shall manage input and output communication signals to allow distributed controllers to share real and virtual object information and allow for central monitoring and alarms.
- 6. Controllers that perform scheduling shall have a real-time clock.
- 7. Controller shall continually check status of its processor and memory circuits. If an abnormal operation is detected, controller shall assume a predetermined failure mode and generate an alarm notification.
- 8. Controllers shall be fully programmable.
- B. Communication:
 - 1. Network controllers shall communicate with other devices on DDC system Level one network.
 - 2. Network controller also shall perform routing if connected to a network of programmable application and application-specific controllers.
- C. Operator Interface:
 - 1. Controller shall be equipped with a service communications port for connection to a portable operator's workstation or mobile device.
- D. Serviceability:
 - 1. Controller shall be equipped with diagnostic LEDs or other form of local visual indication of power, communication, and processor.
 - 2. Wiring and cable connections shall be made to field-removable, modular terminal strips or to a termination card connected by a ribbon cable.
 - 3. Controller shall maintain BIOS and programming information in event of a power loss for at least 72 hours.

2.12 PROGRAMMABLE APPLICATION CONTROLLERS

- A. General Programmable Application Controller Requirements:
 - 1. Include adequate number of controllers to achieve performance indicated.
 - 2. Controller shall have enough memory to support its operating system, database, and programming requirements.
 - 3. Data shall be shared between networked controllers and other network devices.
 - 4. Operating system of controller shall manage input and output communication signals to allow distributed controllers to share real and virtual object information and allow for central monitoring and alarms.
 - 5. Controllers that perform scheduling shall have a real-time clock.
 - 6. Controller shall continually check status of its processor and memory circuits. If an abnormal operation is detected, controller shall assume a predetermined failure mode and generate an alarm notification.
 - 7. Controllers shall be fully programmable.
- B. Communication:

- 1. Programmable application controllers shall communicate with other devices on network.
- C. Operator Interface:
 - 1. Controller shall be equipped with a service communications port for connection to a portable operator's workstation or mobile device.
- D. Serviceability:
 - 1. Controller shall be equipped with diagnostic LEDs or other form of local visual indication of power, communication, and processor.
 - 2. Wiring and cable connections shall be made to field-removable, modular terminal strips or to a termination card connected by a ribbon cable.
 - 3. Controller shall maintain BIOS and programming information in event of a power loss for at least 72 hours.

2.13 APPLICATION-SPECIFIC CONTROLLERS

- A. Description: Microprocessor-based controllers, which through hardware or firmware design are dedicated to control a specific piece of equipment. Controllers are not fully user-programmable but are configurable and customizable for operation of equipment they are designed to control.
 - 1. Capable of standalone operation and shall continue to include control functions without being connected to network.
 - 2. Data shall be shared between networked controllers and other network devices.
- B. Communication: Application-specific controllers shall communicate with other application-specific controller and devices on network, and to programmable application and network controllers.
- C. Operator Interface: Controller shall be equipped with a service communications port for connection to a portable operator's workstation. Connection shall extend to port on space temperature sensor that is connected to controller.
- D. Serviceability:
 - 1. Controller shall be equipped with diagnostic LEDs or other form of local visual indication of power, communication, and processor.
 - 2. Wiring and cable connections shall be made to field-removable, modular terminal strips or to a termination card connected by a ribbon cable.
 - 3. Controller shall use nonvolatile memory and maintain all BIOS and programming information in event of power loss.

2.14 CONTROLLER SOFTWARE

- A. General Controller Software Requirements:
 - 1. Software applications shall reside and operate in controllers. Editing of applications shall occur at operator workstations.

- I/O points shall be identified by up to [30] <Insert number>-character point name and up to [16] <Insert number>-character point descriptor. Same names shall be used at operator workstations.
- 3. Control functions shall be executed within controllers using DDC algorithms.
- 4. Controllers shall be configured to use stored default values to ensure fail-safe operation. Default values shall be used when there is a failure of a connected input instrument or loss of communication of a global point value.
- B. Security:
 - 1. Operator access shall be secured using individual security passwords and user names.
 - 2. Passwords shall restrict operator to points, applications, and system functions as assigned by system manager.
 - 3. Operator log-on and log-off attempts shall be recorded.
 - 4. System shall protect itself from unauthorized use by automatically logging off after last keystroke. The delay time shall be operator-definable.
- C. Scheduling: Include capability to schedule each point or group of points in system. Each schedule shall consist of the following:
 - 1. Weekly Schedule:
 - a. Include separate schedules for each day of week.
 - b. Each schedule should include the capability for start, stop, optimal start, optimal stop, and night economizer.
 - c. Each schedule may consist of up to 10 events.
 - d. When a group of objects are scheduled together, include capability to adjust start and stop times for each member.
 - 2. Exception Schedules:
 - a. Include ability for operator to designate any day of the year as an exception schedule.
 - b. Exception schedules may be defined up to a year in advance. Once an exception schedule is executed, it will be discarded and replaced by regular schedule for that day of week.
 - 3. Holiday Schedules:
 - a. Include capability for operator to define up to 99 special or holiday schedules.
 - b. Schedules may be placed on scheduling calendar and will be repeated each year.
 - c. Operator shall be able to define length of each holiday period.
- D. System Coordination:
 - 1. Include standard application for proper coordination of equipment.
 - 2. Application shall include operator with a method of grouping together equipment based on function and location.
 - 3. Group may then be used for scheduling and other applications.
- E. Binary Alarms:

- 1. Each binary point shall be set to alarm based on operator-specified state.
- 2. Include capability to automatically and manually disable alarming.
- F. Analog Alarms:
 - 1. Each analog object shall have both high and low alarm limits.
 - 2. Alarming shall be able to be automatically and manually disabled.
- G. Alarm Reporting:
 - 1. Operator shall be able to determine action to be taken in event of an alarm.
 - 2. Alarms shall be routed to appropriate operator workstations based on time and other conditions.
 - 3. Alarm shall be able to start programs, print, be logged in event log, generate custom messages, and display graphics.
- H. Remote Communication:
 - 1. System shall have ability to dial out in the event of an alarm.
- I. Electric Power Demand Limiting:
 - 1. Demand-limiting program shall monitor building or other operator-defined electric power consumption from signals connected to electric power meter or from a watt transducer or current transformer.
 - 2. Demand-limiting program shall predict probable power demand such that action can be taken to prevent exceeding demand limit. When demand prediction exceeds demand limit, action will be taken to reduce loads in a predetermined manner. When demand prediction indicates demand limit will not be exceeded, action will be taken to restore loads in a predetermined manner.
 - 3. Demand reduction shall be accomplished by the following means:
 - a. Reset air-handling unit supply temperature set points.
 - b. Reset space temperature set points.
 - c. De-energize equipment based on priority.
 - 4. Demand-limiting parameters, frequency of calculations, time intervals, and other relevant variables shall be based on the means by which electric power service provider computes demand charges.
 - 5. Include demand-limiting prediction and control for any individual meter monitored by system or for total of any combination of meters.
 - 6. Include means operator to make the following changes online:
 - a. Addition and deletion of loads controlled.
 - b. Changes in demand intervals.
 - c. Changes in demand limit for meter(s).
 - d. Maximum shutoff time for equipment.
 - e. Minimum shutoff time for equipment.
 - f. Select rotational or sequential shedding and restoring.
 - g. Shed and restore priority.
 - 7. Include the following information and reports, to be available on an hourly, daily, weekly, monthly and annual basis:

- a. Total electric consumption.
- b. Peak demand.
- c. Date and time of peak demand.
- d. Daily peak demand.
- J. Maintenance Management: System shall monitor equipment status and generate maintenance messages based on operator-designated run-time, starts, and calendar date limits.
- K. Sequencing: Include application software based on sequences of operation indicated to properly sequence chillers, boilers, and other applicable HVAC equipment.
- L. Control Loops:
 - 1. Support any of the following control loops, as applicable to control required:
 - a. Two-position (on/off, open/close, slow/fast) control.
 - b. Proportional control.
 - c. Proportional plus integral (PI) control.
 - d. Proportional plus integral plus derivative (PID) control.
 - 1) Include PID algorithms with direct or reverse action and antiwindup.
 - 2) Algorithm shall calculate a time-varying analog value used to position an output or stage a series of outputs.
 - 3) Controlled variable, set point, and PID gains shall be operatorselectable.
 - e. Adaptive (automatic tuning).
- M. Staggered Start: Application shall prevent all controlled equipment from simultaneously restarting after a power outage. Order which equipment (or groups of equipment) is started, along with the time delay between starts, shall be operator-selectable.
- N. Energy Calculations:
 - 1. Include software to allow instantaneous power or flow rates to be accumulated and converted to energy usage data.
 - 2. Include an algorithm that calculates a sliding-window average (rolling average). Algorithm shall be flexible to allow window intervals to be operator specified (such as 15, 30, or 60 minutes).
 - 3. Include an algorithm that calculates a fixed-window average. A digital input signal shall define start of window period (such as signal from utility meter) to synchronize fixed-window average with that used by utility.
- O. Anti-Short Cycling:
 - 1. BO points shall be protected from short cycling.
 - 2. Feature shall allow minimum on-time and off-time to be selected.
- P. On and Off Control with Differential:
 - 1. Include an algorithm that allows a BO to be cycled based on a controlled variable and set point.

- 2. Algorithm shall be direct- or reverse-acting and incorporate an adjustable differential.
- Q. Run-Time Totalization:
 - 1. Include software to totalize run-times for all BI [and BO]points.
 - 2. A high run-time alarm shall be assigned, if required, by operator.

2.15 ENCLOSURES

- A. General Enclosure Requirements:
 - 1. House each controller and associated control accessories in an enclosure. Enclosure shall serve as central tie-in point for control devices such as switches, transmitters, transducers, power supplies and transformers.
 - 2. Do not house more than one controller in a single enclosure.
 - 3. Include enclosure door with key locking mechanism. Key locks alike for all enclosures and include one pair of keys per enclosure.
 - 4. Include wall-mounted enclosures with brackets suitable for mounting enclosures to wall or freestanding support stand as indicated.
 - 5. Supply each enclosure with a complete set of as-built schematics, tubing, and wiring diagrams and product literature located in a pocket on inside of door.
- B. Environmental Requirements:
 - 1. Evaluate temperature and humidity requirements of each product to be installed within each enclosure.
 - 2. Calculate enclosure internal operating temperature considering heat dissipation of all products installed within enclosure and ambient effects (solar, conduction and wind) on enclosure.
 - 3. Where required by application, include temperature-controlled electrical heat to maintain inside of enclosure above minimum operating temperature of product with most stringent requirement.
 - 4. Where required by application, include temperature-controlled ventilation fans with filtered louver(s) to maintain inside of enclosure below maximum operating temperature of product with most stringent requirement.
 - 5. Include temperature-controlled cooling within the enclosure for applications where ventilation fans cannot maintain inside temperature of enclosure below maximum operating temperature of product with most stringent requirement.
 - 6. Where required by application, include humidity-controlled electric dehumidifier or cooling to maintain inside of enclosure below maximum relative humidity of product with most stringent requirement and to prevent surface condensation within enclosure.
- C. Wall-Mounted, NEMA 250, Type 1:
 - 1. Enclosure shall be NRTL listed according to UL 50 or UL 50E.
 - 2. Construct enclosure of steel, not less than:
 - a. Enclosure size less than 24 in.: 0.053 in. or 0.067 in. thick.
 - b. Enclosure size 24 in. and larger: 0.067 in. or 0.093 in. thick.

- 3. Finish enclosure inside and out with polyester powder coating that is electrostatically applied and then baked to bond to substrate.
- 4. Hinged door full size of front face of enclosure and supported using:
 - a. Enclosures sizes less than 36 in. tall: Multiple butt hinges.
 - b. Enclosures sizes 36 in. tall and larger: Continuous piano hinges.
- 5. Removable internal panel with a white polyester powder coating that is electrostatically applied and then baked to bond to substrate.
 - a. Size less than 24 in.: Solid or Perforated steel, 0.053 in. thick.
 - b. Size 24 in. and larger: Solid aluminum, 0.10 in. or steel, 0.093 in. thick.
- 6. Internal panel mounting hardware, grounding hardware and sealing washers.
- 7. Grounding stud on enclosure body.
- 8. Thermoplastic pocket on inside of door for record Drawings and Product Data.
- D. Wall Mounted NEMA 250, Types 4 and 12:
 - 1. Enclosure shall be NRTL listed according to UL 508A.
 - 2. Seam and joints are continuously welded and ground smooth.
 - 3. Where recessed enclosures are indicated, include enclosures with face flange for flush mounting.
 - 4. Externally formed body flange around perimeter of enclosure face for continuous perimeter seamless gasket door seal.
 - 5. Single-door enclosure sizes up to 60 inches tall by 36 inches wide.
 - 6. Double-door enclosure sizes up to 36 inches tall by 60 inches wide.
 - 7. Construct enclosure of steel, not less than the following:
 - a. Size Less Than 24 Inches: 0.053 inch or 0.067 inch thick.
 - b. Size 24 Inches and Larger: 0.067 inch thick.
 - 8. Finish enclosure with polyester powder coating that is electrostatically applied and then baked to bond to substrate.
 - 9. Corner-formed door, full size of enclosure face, supported using multiple concealed hinges with easily removable hinge pins.
 - a. Sizes through 24 Inches Tall: Two hinges.
 - b. Sizes between 24 Inches through 48 Inches Tall: Three hinges.
 - c. Sizes Larger 48 Inches Tall: Four hinges.
 - 10. Double-door enclosures with overlapping door design to include unobstructed full-width access.
 - a. Single-door enclosures 48 inches and taller, and all double-door enclosures, with three-point (top, middle and bottom) latch system.
 - 11. Removable internal panel with a white polyester powder coating that is electrostatically applied and then baked to bond to substrate.
 - a. Size Less Than 24 Inches: Solid or perforated steel, 0.053 inch thick.

- b. Size 24 Inches and Larger: Solid aluminum, 0.10 inch or steel, 0.093 inch thick.
- 12. Internal panel mounting studs with hardware, grounding hardware, and sealing washers.
- 13. Grounding stud on enclosure body.
- 14. Thermoplastic pocket on inside of door for record Drawings and Product Data.

2.16 RELAYS

- A. General-Purpose Relays:
 - 1. Relays shall be heavy duty and rated for at least 10 A at 250-V ac and 60 Hz.
 - 2. Relays shall be either double pole double throw (DPDT) or three-pole double throw, depending on the control application.
 - 3. Use a plug-in-style relay with an eight-pin octal plug for DPDT relays and an 11pin octal plug for three-pole double-throw relays.
 - 4. Construct the contacts of either silver cadmium oxide or gold.
 - 5. Enclose the relay in a clear transparent polycarbonate dust-tight cover.
 - 6. Relays shall have LED indication and a manual reset and push-to-test button.
 - 7. Performance:
 - a. Mechanical Life: At least 10 million cycles.
 - b. Electrical Life: At least 100,000 cycles at rated load.
 - c. Pickup Time: 15 ms or less.
 - d. Dropout Time: 10 ms or less.
 - e. Pull-in Voltage: 85 percent of rated voltage.
 - f. Dropout Voltage: 50 percent of nominal rated voltage.
 - g. Power Consumption: 2 VA.
 - h. Ambient Operating Temperatures: Minus 40 to 115 deg F.
 - 8. Equip relays with coil transient suppression to limit transients to non-damaging levels.
 - 9. Plug each relay into an industry-standard, 35-mm DIN rail socket. Plug all relays located in control panels into sockets that are mounted on a DIN rail.
 - 10. Relay socket shall have screw terminals. Mold into the socket the coincident screw terminal numbers and associated octal pin numbers.
- B. Multifunction Time-Delay Relays:
 - 1. Relays shall be continuous duty and rated for at least 10 A at 240-V ac and 60 Hz.
 - 2. Relays shall be DPDT relay with up to eight programmable functions to provide on/off delay, interval and recycle timing functions.
 - 3. Use a plug-in-style relay with either an 8- or 11-pin octal plug.
 - 4. Construct the contacts of either silver cadmium oxide or gold.
 - 5. Enclose the relay in a dust-tight cover.
 - 6. Include knob and dial scale for setting delay time.
 - 7. Performance:
 - a. Mechanical Life: At least 10 million cycles.
 - b. Electrical Life: At least 100,000 cycles at rated load.
 - c. Timing Ranges: Multiple ranges from 0.1 seconds to 100 minutes.

- d. Repeatability: Within 2 percent.
- e. Recycle Time: 45 ms.
- f. Minimum Pulse Width Control: 50 ms.
- g. Power Consumption: 5 VA or less at 120-V ac.
- h. Ambient Operating Temperatures: Minus 40 to 115 deg F.
- 8. Equip relays with coil transient suppression to limit transients to non-damaging levels.
- 9. Plug each relay into an industry-standard, 35-mm DIN rail socket. Plug all relays located in control panels into sockets that are mounted on a DIN rail.
- 10. Relay socket shall have screw terminals. Mold into the socket the coincident screw terminal numbers and associated octal pin numbers.
- C. Latching Relays:
 - 1. Relays shall be continuous duty and rated for at least 10 A at 250-V ac and 60 Hz.
 - 2. Relays shall be either DPDT or three-pole double throw, depending on the control application.
 - 3. Use a plug-in-style relay with a multibladed plug.
 - 4. Construct the contacts of either silver cadmium oxide or gold.
 - 5. Enclose the relay in a clear transparent polycarbonate dust-tight cover.
 - 6. Performance:
 - a. Mechanical Life: At least 10 million cycles.
 - b. Electrical Life: At least 100,000 cycles at rated load.
 - c. Pickup Time: 15 ms or less.
 - d. Dropout Time: 10 ms or less.
 - e. Pull-in Voltage: 85 percent of rated voltage.
 - f. Dropout Voltage: 50 percent of nominal rated voltage.
 - g. Power Consumption: 2 VA.
 - h. Ambient Operating Temperatures: Minus 40 to 115 deg F.
 - 7. Equip relays with coil transient suppression to limit transients to non-damaging levels.
 - 8. Plug each relay into an industry-standard, 35-mm DIN rail socket. Plug all relays located in control panels into sockets that are mounted on a DIN rail.
 - 9. Relay socket shall have screw terminals. Mold into the socket the coincident screw terminal numbers and associated octal pin numbers.
- D. Current Sensing Relay:
 - 1. Monitors ac current.
 - 2. Independent adjustable controls for pickup and dropout current.
 - 3. Energized when supply voltage is present and current is above pickup setting.
 - 4. De-energizes when monitored current is below dropout current.
 - 5. Dropout current is adjustable from 50 to 95 percent of pickup current.
 - 6. Include a current transformer, if required for application.
 - 7. House current sensing relay and current transformer in its own enclosure. Use NEMA 250, Type 12 enclosure for indoors and NEMA 250, Type 4 for outdoors.
- E. Combination On-Off Status Sensor and On-Off Relay:
 - 1. Description:

- a. On-off control and status indication in a single device.
- b. LED status indication of activated relay and current trigger.
- c. Closed-Open-Auto override switch located on the load side of the relay.
- 2. Performance:
 - a. Ambient Temperature: Minus 30 to 140 deg F.
 - b. Voltage Rating: Single-phase loads rated for 300-V ac. Three-phase loads rated for 600-V ac.
- 3. Status Indication:
 - a. Current Sensor: Integral sensing for single-phase loads up to 20 A and external solid or split sensing ring for three-phase loads up to 150 A.
 - b. Current Sensor Range: As required by application.
 - c. Current Set Point: Fixed Adjustable Fixed or adjustable as required by application.
 - d. Current Sensor Output:
 - 1) Solid-state, single-pole double-throw contact rated for 30-V ac and dc and for 0.4 A.
 - 2) Solid-state, single-pole double-throw contact rated for 120-V ac and 1.0 A.
 - 3) Analog, zero- to 5- or 10-V dc.
 - 4) Analog, 4 to 20 mA, loop powered.
- 4. Relay: Single-pole double-throw, continuous-duty coil; rated for 10-million mechanical cycles.
- 5. Enclosure: NEMA 250, Type 1 enclosure.

2.17 ELECTRICAL POWER DEVICES

- A. Transformers:
 - 1. Transformer shall be sized for the total connected load, plus an additional 25 percent of connected load.
 - 2. Transformer shall be at least 40 VA.
 - 3. Transformer shall have both primary and secondary fuses.
- B. DC Power Supply:
 - 1. Plug-in style suitable for mating with a standard eight-pin octal socket. Include the power supply with a mating mounting socket.
 - 2. Enclose circuitry in a housing.
 - 3. Include both line and load regulation to ensure a stable output. To protect both the power supply and the load, power supply shall have an automatic current limiting circuit.
 - 4. Performance:
 - a. Output voltage nominally 25-V dc within 5 percent.
 - b. Output current up to 100 mA.
 - c. Input voltage nominally 120-V ac, 60 Hz.
 - d. Load regulation within 0.5 percent from zero- to 100-mA load.

- e. Line regulation within 0.5 percent at a 100-mA load for a 10 percent line change.
- f. Stability within 0.1 percent of rated volts for 24 hours after a 20-minute warmup.

2.18 CONTROL WIRE AND CABLE

- A. Wire: Single conductor control wiring above 24 V.
 - 1. Wire size shall be at least No. 18 AWG.
 - 2. Conductor shall be 7/24 soft annealed copper strand with 2- to 2.5-inch lay.
 - 3. Conductor insulation shall be 600 V, Type THWN or Type THHN, and 90 deg C according to UL 83.
 - 4. Conductor colors shall be black (hot), white (neutral), and green (ground).
 - 5. Furnish wire on spools.
- B. Single Twisted Shielded Instrumentation Cable above 24 V:
 - 1. Wire size shall be a minimum No. 18 AWG.
 - 2. Conductors shall be a twisted, 7/24 soft annealed copper strand with a 2- to 2.5inch lay.
 - 3. Conductor insulation shall have a Type THHN/THWN or Type TFN rating.
 - 4. Shielding shall be 100 percent type, 0.35/0.5-mil aluminum/Mylar tape, helically applied with 25 percent overlap, and aluminum side in with tinned copper drain wire.
 - 5. Outer jacket insulation shall have a 600-V, 90-deg C rating and shall be Type TC cable.
 - 6. For twisted pair, conductor colors shall be black and white. For twisted triad, conductor colors shall be black, red and white.
 - 7. Furnish wire on spools.
- C. Single Twisted Shielded Instrumentation Cable 24 V and Less:
 - 1. Wire size shall be a minimum No. 18 AWG.
 - 2. Conductors shall be a twisted, 7/24 soft annealed copper stranding with a 2- to 2.5-inch lay.
 - 3. Conductor insulation shall have a nominal 15-mil thickness, constructed from flame-retardant PVC.
 - 4. Shielding shall be 100 percent type, 1.35-mil aluminum/polymer tape, helically applied with 25 percent overlap, and aluminum side in with tinned copper drain wire.
 - 5. Outer jacket insulation shall have a 300-V, 105-deg C rating and shall be Type PLTC cable.
 - 6. For twisted pair, conductor colors shall be black and white. For twisted triad, conductor colors shall be black, red and white.
 - 7. Furnish wire on spools.
- D. LAN and Communication Cable: Comply with DDC system manufacturer requirements for network being installed.
 - 1. Cable shall be balanced twisted pair.

2.19 RACEWAYS

- A. Comply with requirements in Section 260533 "Raceways and Boxes for Electrical Systems" for electrical power raceways and boxes.
- B. Comply with requirements in Section 270528 "Pathways for Communications Systems" for raceways for balanced twisted pair cables and optical fiber cables.

2.20 ACCESSORIES

- A. Pneumatic Pressure Gages:
 - 1. Pressure gages shall a 1.5-inch- diameter face for pressures up through 30 psig and 2.5-inch- diameter face for greater pressures.
 - 2. Include separate gages for branch pressure and main pressure lines.
 - 3. White dial face with black printing.
 - 4. Include 1-psig increment for scale ranges through 30 psig and 2-psig increment for larger ranges.
 - 5. Accuracy: Within 1 percent of full-scale range.
- B. Pressure Electric Switches:
 - 1. Diaphragm-operated snap acting switch.
 - 2. Set point adjustable from 3 to 20 psig.
 - 3. Differential adjustable from 2 to 6 psig.
 - 4. Rated for resistance loads at 120-V ac.
 - 5. Body and switch housing shall be metal.
- C. Damper Blade Limit Switches:
 - 1. Sense positive open and/or closed position of the damper blades.
 - 2. NEMA 250, Type 13, oil-tight construction.
 - 3. Arrange for the mounting application.
 - 4. Additional waterproof enclosure when required by its environment.
 - 5. Arrange to prevent "over-center" operation.
- D. I/P and E/P Transducers:
 - 1. Commercial Grade:
 - a. The transducer shall convert an AO signal to a stepped pneumatic signal. Unless otherwise required by the operating sequence, use a 3- to 15-psig pneumatic signal for pneumatic actuation.
 - b. Construct the entire assembly so that shock and vibration will neither harm the transducer nor affect its accuracy.
 - c. Transducer shall have auto/manual output switch, manual output control and an output pressure gage.
 - d. Accuracy: Within 1.0 percent of the output span.
 - e. Linearity: Within 0.5 percent of the output span.
 - f. Output Capacity: Not less than 550 scim at 15 psig.
 - g. Transducer shall have separate zero and span calibration adjustments.
 - h. The transducer shall withstand up to 40 psig of supply pressure without damage.

- i. For use on only modulating pneumatic outputs that are associated with terminal units, including fan-coil units, VAV units, unit heaters.
- E. E/P Switch:
 - 1. Construct the body of cast aluminum or brass; three pipe body (common, normally open, and normally closed).
 - 2. Internal construction of steel, copper or brass.
 - 3. Air Connections: Barb.
 - 4. Rating of 30 psig when installed in systems below 25 psig and of 150 psig when installed in systems above 25 psig.
 - 5. Include coil transient suppression.
- F. Instrument Enclosures:
 - 1. Include instrument enclosure for secondary protection to comply with requirements indicated in "Performance Requirements" Article.
 - 2. NRTL listed and labeled to UL 50.
 - 3. Sized to include at least 25 percent spare area on subpanel.
 - 4. Instrument(s) mounted within enclosure on internal subpanel(s).
 - 5. Enclosure face with engraved, laminated phenolic nameplate for each instrument within enclosure.
 - 6. Enclosures housing pneumatic instruments shall include main pressure gage and a branch pressure gage for each pneumatic device, installed inside.
 - 7. Enclosures housing multiple instruments shall route tubing and wiring within enclosure in a raceway having a continuous removable cover.
 - 8. Enclosures larger than 12 inches shall have a hinged full-size face cover.

2.21 IDENTIFICATION

- A. Control Equipment, Instruments, and Control Devices:
 - 1. Self-adhesive label Laminated acrylic or melamine plastic sign bearing unique identification.
 - a. Include instruments with unique identification identified by equipment being controlled or monitored, followed by point identification.
 - 2. Legend shall consist of white lettering on black background.
 - 3. Laminated acrylic or melamine plastic sign shall be engraved phenolic consisting of three layers of rigid laminate. Top and bottom layers are color-coded black with contrasting white center exposed by engraving through outer layer and shall be fastened with drive pins.
 - 4. Instruments, control devices and actuators with Project-specific identification tags having unique identification numbers following requirements indicated and provided by original manufacturer do not require additional identification.
- B. Valve Tags:
 - 1. Brass tags and brass chains attached to valve.
 - 2. Tags shall be at least 1.5 inches in diameter.

- 3. Include tag with unique valve identification indicating control influence such as flow, level, pressure, or temperature; followed by location of valve, and followed by three-digit sequential number. For example: TV-1.001.
- 4. Valves with Project-specific identification tags having unique identification numbers following requirements indicated and provided by original manufacturer do not require an additional tag.
- C. Raceway and Boxes:
 - 1. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
 - 2. Paint cover plates on junction boxes and conduit same color as the tape banding for conduits. After painting, label cover plate "HVAC Controls," using an engraved phenolic tag.
- D. Equipment Warning Labels:
 - 1. Self-adhesive label with pressure-sensitive adhesive back and peel-off protective jacket.
 - 2. Lettering size shall be at least 14-point type with white lettering on red background.
 - 3. Warning label shall read "CAUTION-Equipment operated under remote automatic control and may start or stop at any time without warning. Switch electric power disconnecting means to OFF position before servicing."
 - 4. Lettering shall be enclosed in a white line border. Edge of label shall extend at least 0.25 inchbeyond white border.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
 - 1. Verify compatibility with and suitability of substrates.
- B. Examine roughing-in for products to verify actual locations of connections before installation.
 - 1. Examine roughing-in for instruments installed in piping to verify actual locations of connections before installation.
 - 2. Examine roughing-in for instruments installed in duct systems to verify actual locations of connections before installation.
- C. Examine walls, floors, roofs, and ceilings for suitable conditions where product will be installed.
- D. Prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work.
- E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 GENERAL INSTALLATION REQUIREMENTS

- A. Install products to satisfy more stringent of all requirements indicated.
- B. Install products level, plumb, parallel, and perpendicular with building construction.
- C. If codes and referenced standards are more stringent than requirements indicated, comply with requirements in codes and referenced standards.
- D. Fabricate openings and install sleeves in ceilings, floors, roof, and walls required by installation of products. Before proceeding with drilling, punching, and cutting, check for concealed work to avoid damage. Patch, flash, grout, seal, and refinish openings to match adjacent condition.
- E. Firestop Penetrations Made in Fire-Rated Assemblies: Comply with requirements in Section 078413 "Penetration Firestopping."
- F. Seal penetrations made in acoustically rated assemblies. Comply with requirements in Section 079200 "Joint Sealants."
- G. Welding Requirements:
 - 1. Restrict welding and burning to supports and bracing.
 - 2. No equipment shall be cut or welded without approval. Welding or cutting will not be approved if there is risk of damage to adjacent Work.
 - 3. Welding, where approved, shall be by inert-gas electric arc process and shall be performed by qualified welders according to applicable welding codes.
 - 4. If requested on-site, show satisfactory evidence of welder certificates indicating ability to perform welding work intended.
- H. Fastening Hardware:
 - 1. Stillson wrenches, pliers, and other tools that damage surfaces of rods, nuts, and other parts are prohibited for work of assembling and tightening fasteners.
 - 2. Tighten bolts and nuts firmly and uniformly. Do not overstress threads by excessive force or by oversized wrenches.
 - 3. Lubricate threads of bolts, nuts and screws with graphite and oil before assembly.
- I. If product locations are not indicated, install products in locations that are accessible and that will permit service and maintenance from floor, equipment platforms, or catwalks without removal of permanently installed furniture and equipment.

3.3 POT INSTALLATION

- A. Install one portable operator terminal(s).
- B. Turn over POTs to Owner at Substantial Completion.
- C. Install software on each POT and verify that software functions properly.
3.4 ROUTER INSTALLATION

- A. Install routers if required for DDC system communication interface requirements indicated.
 - 1. Install router(s) required to suit indicated requirements.
- B. Test router to verify that communication interface functions properly.

3.5 CONTROLLER INSTALLATION

- A. Install controllers in enclosures to comply with indicated requirements.
- B. Connect controllers to field power supply.
- C. Install controller with latest version of applicable software and configure to execute requirements indicated.
- D. Test and adjust controllers to verify operation of connected I/O to achieve performance indicated requirements while executing sequences of operation.
- E. Installation of Network Controllers:
 - 1. Quantity and location of network controllers shall be determined by DDC system manufacturer to satisfy requirements indicated.
 - 2. Install controllers in a protected location that is easily accessible by operators.
 - 3. Top of controller shall be within 72 inches of finished floor.
- F. Installation of Programmable Application Controllers:
 - 1. Quantity and location of programmable application controllers shall be determined by DDC system manufacturer to satisfy requirements indicated.
 - 2. Install controllers in a protected location that is easily accessible by operators.
 - 3. Top of controller shall be within 72 inches of finished floor.
- G. Application-Specific Controllers:
 - 1. Quantity and location of application-specific controllers shall be determined by DDC system manufacturer to satisfy requirements indicated.
 - 2. For controllers not mounted directly on equipment being controlled, install controllers in a protected location that is easily accessible by operators.

3.6 ELECTRIC POWER CONNECTIONS

- A. Connect electrical power to DDC system products requiring electrical power connections.
- B. Design of electrical power to products not indicated with electric power is delegated to DDC system provider and installing trade. Work shall comply with NFPA 70 and other requirements indicated.

- C. Comply with requirements in Section 262816 "Enclosed Switches and Circuit Breakers" for electrical power circuit breakers.
- D. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables" for electrical power conductors and cables.
- E. Comply with requirements in Section 260533 "Raceways and Boxes for Electrical Systems" for electrical power raceways and boxes.

3.7 IDENTIFICATION

- A. Identify system components, wiring, cabling, and terminals. Comply with requirements in Section 260553 "Identification for Electrical Systems" for identification products and installation.
- B. Install unique instrument identification on face of each instrument connected to a DDC controller.
- C. Install unique identification on face of each control damper and valve actuator connected to a DDC controller.
- D. Where product is installed above accessible tile ceiling, also install matching identification on face of ceiling grid located directly below.
- E. Where product is installed above an inaccessible ceiling, also install identification on face of access door directly below.
- F. Warning Labels and Signs:
 - 1. Shall be permanently attached to equipment that can be automatically started by DDC control system.
 - 2. Shall be located in highly visible location near power service entry points.

3.8 NETWORK INSTALLATION

- A. Install balanced twisted pair or optical fiber cable when connecting between the following network devices located in same building:
 - 1. Operator workstations.
 - 2. Operator workstations and network controllers.
 - 3. Network controllers.
- B. Install balanced twisted pair or copper cable (as required by equipment) when connecting between the following:
 - 1. Gateways.
 - 2. Gateways and network controllers or programmable application controllers.
 - 3. Routers.
 - 4. Routers and network controllers or programmable application controllers.
 - 5. Network controllers and programmable application controllers.
 - 6. Programmable application controllers.
 - 7. Programmable application controllers and application-specific controllers.

- 8. Application-specific controllers.
- C. Install cable in continuous raceway.
 - 1. Where indicated on Drawings, cable trays may be used for copper cable in lieu of conduit.

3.9 NETWORK NAMING AND NUMBERING

- A. Coordinate with Owner and provide unique naming and addressing for networks and devices.
- B. ASHRAE 135 Networks:
 - 1. MAC Address:
 - a. Every network device shall have an assigned and documented MAC address unique to its network.
 - b. Ethernet Networks: Document MAC address assigned at its creation.
 - c. ARCNET or MS/TP networks: Assign from 00 to 64.
 - 2. Network Numbering:
 - a. Assign unique numbers to each new network.
 - b. Provide ability for changing network number through device switches or operator interface.
 - c. DDC system, with all possible connected LANs, can contain up to 65,534 unique networks.
 - 3. Device Object Identifier Property Number:
 - a. Assign unique device object identifier property numbers or device instances for each device network.
 - b. Provide for future modification of device instance number by device switches or operator interface.
 - c. LAN shall support up to 4,194,302 unique devices.
 - 4. Device Object Name Property Text:
 - a. Device object name property field shall support 32 minimum printable characters.
 - b. Assign unique device "Object Name" property names with plain-English descriptive names for each device.
 - 1) Example 1: Device object name for device controlling boiler plant at Building 1000 would be "HW System B1000."
 - 2) Example 2: Device object name for a VAV terminal unit controller could be "VAV unit 102".
 - 5. Object Name Property Text for Other Than Device Objects:
 - a. Object name property field shall support 32 minimum printable characters.

- b. Assign object name properties with plain-English names descriptive of application.
 - 1) Example 1: "Zone 1 Temperature."
 - 2) Example 2 "Fan Start and Stop."
- 6. Object Identifier Property Number for Other Than Device Objects:
 - a. If not indicated, object identifier property numbers may be assigned at Installer's discretion but must be approved by Owner in advance, be documented and be unique for like object types within device.

3.10 CONTROL WIRE, CABLE AND RACEWAYS INSTALLATION

- A. Comply with NECA 1.
- B. Wire and Cable Installation:
 - 1. Comply with installation requirements in Section 260523 "Control-Voltage Electrical Power Cables."
 - 2. Comply with installation requirements in Section 271313 "Communications Copper Backbone Cabling."
 - 3. Comply with installation requirements in Section 271513 "Communications Copper Horizontal Cabling."
- C. Conduit Installation:
 - 1. Comply with Section "260533 "Raceways and Boxes for Electrical Systems" for control-voltage conductors.
 - 2. Comply with Section 270528 "Pathways for Communications Systems" for balanced twisted pair cabling and optical fiber installation.

3.11 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 - 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 - 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 - 3. Testing of Pneumatic and Air-Signal Tubing:
 - a. Test for leaks and obstructions.
 - b. Disconnect each pipe and tubing line before a test is performed, and blowout dust, dirt, trash, condensate and other foreign materials with compressed air. Use commercially pure compressed air or nitrogen as distributed in gas cylinders. Air from an oil-free compressor with an air dryer is an acceptable alternative for the test.
 - c. After foreign matter is expelled and line is free from obstructions, plug far end of tubing run.
 - d. Connect a pressure source to near end of run with a needle valve between air supply and tubing run.

- e. Connect a pressure gage accurate to within 0.5 percent of test between the shutoff needle valve and tubing run under test.
- f. For system pressures above 30 psig, apply a pressure of 1.5 times operating pressure. Record pressure in tubing run every 10 minutes for one hour. Allowable drop in pressure in one-hour period shall not exceed 1 psig.
- g. For system pressures 30 psig and below, apply a pressure of 2.0 times operating pressure to piping and tubing run. Record pressure in tubing run every 5 minutes for one hour. Allowable drop in pressure in one-hour period shall not exceed 0.5 psig.

B. Testing:

- 1. Perform preinstallation, in-progress, and final tests, supplemented by additional tests, as necessary.
- 2. Preinstallation Cable Verification: Verify integrity and serviceability for new cable lengths before installation. This assurance may be provided by using vendor verification documents, testing, or other methods. As a minimum, furnish evidence of verification for cable attenuation and bandwidth parameters.
- 3. In-Progress Testing: Perform standard tests for correct pair identification and termination during installation to ensure proper installation and cable placement. Perform tests in addition to those specified if there is any reason to question condition of material furnished and installed. Testing accomplished is to be documented by agency conducting tests. Submit test results for Project record.
- 4. Final Testing: Perform final test of installed system to demonstrate acceptability as installed. Testing shall be performed according to a test plan supplied by DDC system manufacturer. Defective Work or material shall be corrected and retested. As a minimum, final testing for cable system, including spare cable, shall verify conformance of attenuation, length, and bandwidth parameters with performance indicated.
- 5. Test Equipment: Use an optical fiber time domain reflectometer for testing of length and optical connectivity.
- 6. Test Results: Record test results and submit copy of test results for Project record.

3.12 DDC SYSTEM I/O CHECKOUT PROCEDURES

- A. Check installed products before continuity tests, leak tests and calibration.
- B. Check instruments for proper location and accessibility.
- C. Check instruments for proper installation on direction of flow, elevation, orientation, insertion depth, or other applicable considerations that will impact performance.
- D. Check instrument tubing for proper isolation, fittings, slope, dirt legs, drains, material and support.
- E. For pneumatic products, verify that air supply for each product is properly installed.
- F. Control Damper Checkout:
 - 1. For pneumatic dampers, verify that pressure gages are provided in each air line to damper actuator and positioner.

OMD: CAMP UMATILLA PAGE 53 ENLISTED BARRACKS EB3 SECTION 23 09 23 DIRECT DIGITAL CONTROL SYSTEM FOR HVAC

- 2. Verify that control dampers are installed correctly for flow direction.
- 3. Verify that proper blade alignment, either parallel or opposed, has been provided.
- 4. Verify that damper frame attachment is properly secured and sealed.
- 5. Verify that damper actuator and linkage attachment is secure.
- 6. Verify that actuator wiring is complete, enclosed and connected to correct power source.
- 7. Verify that damper blade travel is unobstructed.
- G. Control Valve Checkout:
 - 1. For pneumatic valves, verify that pressure gages are provided in each air line to valve actuator and positioner.
 - 2. Verify that control valves are installed correctly for flow direction.
 - 3. Verify that valve body attachment is properly secured and sealed.
 - 4. Verify that valve actuator and linkage attachment is secure.
 - 5. Verify that actuator wiring is complete, enclosed and connected to correct power source.
 - 6. Verify that valve ball, disc or plug travel is unobstructed.
 - 7. After piping systems have been tested and put into service, but before insulating and balancing, inspect each valve for leaks. Adjust or replace packing to stop leaks. Replace the valve if leaks persist.
- H. Instrument Checkout:
 - 1. Verify that instrument is correctly installed for location, orientation, direction and operating clearances.
 - 2. Verify that attachment is properly secured and sealed.
 - 3. Verify that conduit connections are properly secured and sealed.
 - 4. Verify that wiring is properly labeled with unique identification, correct type and size and is securely attached to proper terminals.
 - 5. Inspect instrument tag against approved submittal.
 - 6. For instruments with tubing connections, verify that tubing attachment is secure and isolation valves have been provided.
 - 7. For flow instruments, verify that recommended upstream and downstream distances have been maintained.
 - 8. For temperature instruments:
 - a. Verify sensing element type and proper material.
 - b. Verify length and insertion.

3.13 DDC SYSTEM I/O ADJUSTMENT, CALIBRATION AND TESTING:

- A. Calibrate each instrument installed that is not factory calibrated and provided with calibration documentation.
- B. Provide a written description of proposed field procedures and equipment for calibrating each type of instrument. Submit procedures before calibration and adjustment.
- C. For each analog instrument, make a three-point test of calibration for both linearity and accuracy.
- D. Equipment and procedures used for calibration shall comply with instrument manufacturer's written instructions.

- E. Provide diagnostic and test equipment for calibration and adjustment.
- F. Field instruments and equipment used to test and calibrate installed instruments shall have accuracy at least twice the instrument accuracy being calibrated. An installed instrument with an accuracy of 1 percent shall be checked by an instrument with an accuracy of 0.5 percent.
- G. Calibrate each instrument according to instrument instruction manual supplied by manufacturer.
- H. If after calibration indicated performance cannot be achieved, replace out-of-tolerance instruments.
- I. Comply with field testing requirements and procedures indicated by ASHRAE's Guideline 11, "Field Testing of HVAC Control Components," in the absence of specific requirements, and to supplement requirements indicated.
- J. Analog Signals:
 - 1. Check analog voltage signals using a precision voltage meter at zero, 50, and 100 percent.
 - 2. Check analog current signals using a precision current meter at zero, 50, and 100 percent.
 - 3. Check resistance signals for temperature sensors at zero, 50, and 100 percent of operating span using a precision-resistant source.
- K. Digital Signals:
 - 1. Check digital signals using a jumper wire.
 - 2. Check digital signals using an ohmmeter to test for contact making or breaking.
- L. Control Dampers:
 - 1. Stroke and adjust control dampers following manufacturer's recommended procedure, from 100 percent open to 100 percent closed and back to 100 percent open.
 - 2. Stroke control dampers with pilot positioners. Adjust damper and positioner following manufacturer's recommended procedure, so damper is 100 percent closed, 50 percent closed and 100 percent open at proper air pressure.
 - 3. Check and document open and close cycle times for applications with a cycle time less than 30 seconds.
 - 4. For control dampers equipped with positive position indication, check feedback signal at multiple positions to confirm proper position indication.
- M. Control Valves:
 - 1. Stroke and adjust control valves following manufacturer's recommended procedure, from 100 percent open to 100 percent closed and back to 100 percent open.
 - 2. Stroke control valves with pilot positioners. Adjust valve and positioner following manufacturer's recommended procedure, so valve is 100 percent closed, 50 percent closed and 100 percent open at proper air pressures.
 - 3. Check and document open and close cycle times for applications with a cycle time less than 30 seconds.

- 4. For control valves equipped with positive position indication, check feedback signal at multiple positions to confirm proper position indication.
- N. Meters: Check sensors at zero, 50, and 100 percent of Project design values.
- O. Sensors: Check sensors at zero, 50, and 100 percent of Project design values.
- P. Switches: Calibrate switches to make or break contact at set points indicated.
- Q. Transmitters:
 - 1. Check and calibrate transmitters at zero, 50, and 100 percent of Project design values.
 - 2. Calibrate resistance temperature transmitters at zero, 50, and 100 percent of span using a precision-resistant source.

3.14 DDC SYSTEM CONTROLLER CHECKOUT

- A. Verify power supply.
 - 1. Verify voltage, phase and hertz.
 - 2. Verify that protection from power surges is installed and functioning.
 - 3. Verify that ground fault protection is installed.
 - 4. If applicable, verify if connected to UPS unit.
 - 5. If applicable, verify if connected to a backup power source.
 - 6. If applicable, verify that power conditioning units, transient voltage suppression and high-frequency noise filter units are installed.
- B. Verify that wire and cabling is properly secured to terminals and labeled with unique identification.
- C. Verify that spare I/O capacity is provided.

3.15 DDC CONTROLLER I/O CONTROL LOOP TESTS

- A. Testing:
 - 1. Test every I/O point connected to DDC controller to verify that safety and operating control set points are as indicated and as required to operate controlled system safely and at optimum performance.
 - 2. Test every I/O point throughout its full operating range.
 - 3. Test every control loop to verify operation is stable and accurate.
 - 4. Adjust control loop proportional, integral and derivative settings to achieve optimum performance while complying with performance requirements indicated. Document testing of each control loop's precision and stability via trend logs.
 - 5. Test and adjust every control loop for proper operation according to sequence of operation.
 - 6. Test software and hardware interlocks for proper operation. Correct deficiencies.
 - 7. Operate each analog point at the following:
 - a. Upper quarter of range.
 - b. Lower quarter of range.

- c. At midpoint of range.
- 8. Exercise each binary point.
- 9. For every I/O point in DDC system, read and record each value at operator workstation, at DDC controller and at field instrument simultaneously. Value displayed at operator workstation, at DDC controller and at field instrument shall match.
- 10. Prepare and submit a report documenting results for each I/O point in DDC system and include in each I/O point a description of corrective measures and adjustments made to achieve desire results.

3.16 FINAL REVIEW

- A. Submit written request to Architect when DDC system is ready for final review. Written request shall state the following:
 - 1. DDC system has been thoroughly inspected for compliance with contract documents and found to be in full compliance.
 - 2. DDC system has been calibrated, adjusted and tested and found to comply with requirements of operational stability, accuracy, speed and other performance requirements indicated.
 - 3. DDC system monitoring and control of HVAC systems results in operation according to sequences of operation indicated.
 - 4. DDC system is complete and ready for final review.
- B. Review by Architect shall be made after receipt of written request. A field report shall be issued to document observations and deficiencies.
- C. Take prompt action to remedy deficiencies indicated in field report and submit a second written request when all deficiencies have been corrected. Repeat process until no deficiencies are reported.
- D. Should more than two reviews be required, DDC system manufacturer and Installer shall compensate entity performing review for total costs, labor and expenses, associated with third and subsequent reviews. Estimated cost of each review shall be submitted and approved by DDC system manufacturer and Installer before making the review.
- E. Prepare and submit closeout submittals when no deficiencies are reported.
- F. A part of DDC system final review shall include a demonstration to parties participating in final review.
 - 1. Provide staff familiar with DDC system installed to demonstrate operation of DDC system during final review.
 - 2. Provide testing equipment to demonstrate accuracy and other performance requirements of DDC system that is requested by reviewers during final review.

3.17 ADJUSTING

A. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

3.18 DEMONSTRATION

- A. Engage a factory-authorized service representative with complete knowledge of Project-specific system installed to train Owner's maintenance personnel to adjust, operate, and maintain DDC system.
- B. Extent of Training:
 - 1. Base extent of training on scope and complexity of DDC system indicated and training requirements indicated. Provide extent of training required to satisfy requirements indicated even if more than minimum training requirements are indicated.
 - 2. Inform Owner of anticipated training requirements if more than minimum training requirements are indicated.
 - 3. Minimum Training Requirements:
 - a. Stagger training over multiple training classes to accommodate Owner's requirements. All training shall occur before end of warranty period.
 - b. Total days of training shall be broken into not more than three separate training classes.
 - c. Each training class shall be not less than two consecutive day(s).
- C. Training Schedule:
 - 1. Schedule training with Owner 20 business days before expected Substantial Completion.
 - 2. Schedule training to provide Owner with at least 20 business days of notice in advance of training.
 - 3. Training shall occur within normal business hours at a mutually agreed on time. Unless otherwise agreed to, training shall occur Monday through Friday, except on U.S. Federal holidays, with two morning sessions and two afternoon sessions.
 - 4. Provide staggered training schedule as requested by Owner.
- D. Attendee Training Manuals:
 - 1. Provide each attendee with a color hard copy of all training materials and visual presentations.
 - 2. Hard-copy materials shall be organized in a three-ring binder with table of contents and individual divider tabs marked for each logical grouping of subject matter. Organize material to provide space for attendees to take handwritten notes within training manuals.
 - 3. In addition to hard-copy materials included in training manual, provide each binder with a sleeve or pocket that includes a DVD or flash drive with PDF copy of all hard-copy materials.
- E. Instructor Requirements:

- 1. One or multiple qualified instructors, as required, to provide training.
- 2. Instructors shall have not less than five years of providing instructional training on not less than five past projects with similar DDC system scope and complexity to DDC system installed.
- F. Training Outline:
 - 1. Submit training outline for Owner review at least 10 business day before scheduling training.
 - 2. Outline shall include a detailed agenda for each training day that is broken down into each of four training sessions that day, training objectives for each training session and synopses for each lesson planned.
- G. On-Site Training:
 - 1. Owner will provide conditioned classroom or workspace with ample desks or tables, chairs, power and data connectivity for instructor and each attendee.
 - 2. Instructor shall provide training materials, projector and other audiovisual equipment used in training.
 - 3. Provide as much of training located on-site as deemed feasible and practical by Owner.
 - 4. On-site training shall include regular walk-through tours, as required, to observe each unique product type installed with hands-on review of operation, calibration and service requirements.
 - 5. Operator workstation provided with DDC system shall be used in training. If operator workstation is not indicated, provide a temporary workstation to convey training content.
- H. Training Content for Daily Operators:
 - 1. Basic operation of system.
 - 2. Understanding DDC system architecture and configuration.
 - 3. Understanding each unique product type installed including performance and service requirements for each.
 - 4. Understanding operation of each system and equipment controlled by DDC system including sequences of operation, each unique control algorithm and each unique optimization routine.
 - 5. Operating operator workstations, printers and other peripherals.
 - 6. Logging on and off system.
 - 7. Accessing graphics, reports and alarms.
 - 8. Adjusting and changing set points and time schedules.
 - 9. Recognizing DDC system malfunctions.
 - 10. Understanding content of operation and maintenance manuals including control drawings.
 - 11. Understanding physical location and placement of DDC controllers and I/O hardware.
 - 12. Accessing data from DDC controllers.
 - 13. Operating portable operator workstations.
 - 14. Review of DDC testing results to establish basic understanding of DDC system operating performance and HVAC system limitations as of Substantial Completion.
 - 15. Running each specified report and log.
 - 16. Displaying and demonstrating each data entry to show Project-specific customizing capability. Demonstrating parameter changes.

OMD: CAMP UMATILLA PAGE 59 ENLISTED BARRACKS EB3 SECTION 23 09 23 DIRECT DIGITAL CONTROL SYSTEM FOR HVAC

- 17. Stepping through graphics penetration tree, displaying all graphics, demonstrating dynamic updating, and direct access to graphics.
- 18. Executing digital and analog commands in graphic mode.
- 19. Demonstrating control loop precision and stability via trend logs of I/O for not less than 10 percent of I/O installed.
- 20. Demonstrating DDC system performance through trend logs and command tracing.
- 21. Demonstrating scan, update, and alarm responsiveness.
- 22. Demonstrating spreadsheet and curve plot software, and its integration with database.
- 23. Demonstrating on-line user guide, and help function and mail facility.
- 24. Demonstrating multitasking by showing dynamic curve plot, and graphic construction operating simultaneously via split screen.
- 25. Demonstrating the following for HVAC systems and equipment controlled by DDC system:
 - a. Operation of HVAC equipment in normal-off, -on and failed conditions while observing individual equipment, dampers and valves for correct position under each condition.
 - b. For HVAC equipment with factory-installed software, show that integration into DDC system is able to communicate with DDC controllers or gateways, as applicable.
 - c. Using graphed trends, show that sequence of operation is executed in correct manner, and HVAC systems operate properly through complete sequence of operation including seasonal change, occupied and unoccupied modes, warm-up and cool-down cycles and other modes of operation indicated.
 - d. Hardware interlocks and safeties function properly and DDC system performs correct sequence of operation after electrical power interruption and resumption after power is restored.
 - e. Reporting of alarm conditions for each alarm, and confirm that alarms are received at assigned locations, including operator workstations.
 - f. Each control loop responds to set point adjustment and stabilizes within time period indicated.
 - g. Sharing of previously graphed trends of all control loops to demonstrate that each control loop is stable and set points are being maintained.
- I. Video of Training Sessions:
 - 1. Provide a digital video and audio recording of each training session. Create a separate recording file for each session.
 - 2. Stamp each recording file with training session number, session name and date.
 - 3. Provide Owner with two copies of digital files on DVDs or flash drives for later reference and for use in future training.
 - 4. Owner retains right to make additional copies for intended training purposes without having to pay royalties.

END OF SECTION